

17th IEEE Asia Pacific Conference on Circuits and Systems Moving drones for Wireless Coverage in a three-dimensional grid Analyzed via Game Theory

Elena Camuffo, Luca Gorghetto and Leonardo Badia

First Call for Papers

....

Outline

Introduction

- Drone's coordination
- Why Game Theory?
- State of the Art : Two-Dimensional Grid Games

Innovative scenaric

• "Three-Dimensional Grid Game"

Game and Algorithm explanation

- Game-theoretical Analysis
- Nash Q Algorithm

Results

- Convergence and Stationarity
- Average path length

Conclusions

.........

.

.

Introduction

• Unmanned Aerial Vehicles (UAVs): aircraft without any human pilot onboard.

logistics

production

wireless communication

• Future uses of UAVs.

• Problem statement: drones need coordination.

Why Game Theory?

- Motivation for the use of Game Theory
- Stochastic games
 - main idea: allowing to model drone's interactions
- Reinforcement learning (model-free)
 - used when learning problems arise
 - equilibrium learning vs adaptive learning algorithms

State of the Art

- Two-dimensional Grid games.
- Modeling problem for drones: only 2 dimensions.
- Main idea of the contribution of our work:
 - expansion towards the **third dimension**

Innovative Scenario (1/2)

- Extended structure: the Three-Dimensional Grid Game
 - New variety of possible settings
- Possible moves (Up, Down, Left, Right, Forth, Back)

Innovative Scenario (2/2)

- Game structure/**rules**: drones
 - 1. Choose their actions simultaneously.
 - 2. When reaching the goal earn a **positive reward**.
 - 3. Game ends as soon as a drone reaches its goal.
 - 4. When moving into **the same cell** are **bounced back** to the previous.

Game Analysis

- Assumptions:
 - 1. Rewards that each drone can receive:
 - 100 points if it reaches the goal position.
 -1 points if it collides with the other drone.
 0 points otherwise.

- 2. State transitions are deterministic.
- Game Theoretical Analysis: 7 possible Nash Equilibria obtained.

Nash-Q Algorithm

- Nash-Q Learning
 - Our version of Nash Q algorithm by Hu & Wellman developed in Matlab.
 - Convergence in self-play.
 - Takes advantage of the Lemke Howson algorithm to find the NEs.
- Exploits ε-greedy exploration strategy
 - strategies to adopt can be explore, exploit, or explore and exploit.

Results (1/3)

- Convergence of the algorithm for both players ...
- ... but with different timing.
- What does ε represent?
 - controls the probability of choosing the exploit strategy
 - How does the variation of ε change the final outcome?

Results (2/3)

- What does β represent?
 - Discount factor.
- Average reward: similar behavior.
- **Stationarity** of the algorithm.

Results (3/3)

- New Metric introduced: Average path length.
- Number of steps per path distributed **geometrically**.

Conclusions

 \checkmark Nash Equilibria verified.

- ✓ Convergence of Nash-Q algorithm.
- ✓ Average Path length evaluated.
- Possible extensions and Future works:
 - Include more players/obstacles.
 - Verify the solution with **other learning algorithms.**

Thank you!

