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Abstract—The growing diffusion of immersive and interactive
applications is posing new challenges in the multimedia process-
ing chain. When dealing with AR and VR applications, the most
relevant aspects to consider are the (1) quality of the visualized
3D objects and (2) the fluidity in the visualization in case the user
is moving in the environment. In this framework, we propose a
deep learning based approach that estimates the optimal model
parameters to be used in relation to the viewer’s movement and
the model characteristics and quality. The performed tests show
the effectiveness of the proposed approach.

Index Terms—3D model, immersive media, interactive media,
optimization, quality

I. INTRODUCTION

The recent diffusion of Virtual and Augmented Reality (VR
and AR) applications on mobile and wearable devices has
posed new and challenging problems to designer and app
developers. Indeed, providing an immersive experience to the
user implies a smooth rendering of 3D models, as well as
an accurate registration of the displayed view with respect
to the object location and the viewer pose and orientation
[1]. The viewer is considered as the observer’s viewpoint: it
corresponds either to the user or to the camera depending on
the rendering device (head mounted display or mobile device
respectively). Such requirements have significant implications
on the computational effort of the devices [2], the adopted
transmission bandwidth (when the 3D model is streamed)
[3] and on the resulting quality perceived by the user [4].
As a matter of fact, 3D model simplification and formatting
[5] significantly affect this task since it allows reducing the
total amount of triangles or 3D points with negligible quality
difference with respect to the original 3D model [6]. To this
purpose, several shape and appearance simplification solutions
have been adopted [7] to adapt the Level-of-Details (LODs)
along time according to users’ proximity and interaction. Most
of the previous works focus on adapting the cognitive load [8],
predicting users’ action in order to optimize the training expe-
rience [9] or minimizing the amount of transmitted information
[10].

This paper presents a self-adaptive strategy for AR/VR
applications that chooses the most appropriate LOD for a
given model according to user movements and the displayed
object characteristics. This estimation is performed by means
of a shallow neural regression network that processes the time
series of previous viewing positions and orientations, as well

as an integral image of the model characterizing the number
of hidden surfaces from different viewpoints. The proposed
model was optimized for an embedded implementation and
integrated into a Unity3D app that can be deployed on several
mobile AR/VR devices. Experimental results show that the
proposed solution performs well for several sequences.

The remainder of the paper is organized as follows: Sec-
tion II defines the problem of finding the optimal LOD as a
rate shaping problem and overviews some of the related works
proposed in literature. Section III overviews the preliminary
steps required to build up the dataset, detailed in Section IV.
Section V describes the adopted architecture, whose perfor-
mance is explained in Section VI. Section VII draws the final
conclusions.

II. PROBLEM STATEMENT AND RELATED WORKS

The LOD L of a 3D mesh model in a AR/VR applications
strongly affects the system efficiency and the quality perceived
by the end user. The adoption of a large number of triangles
results to be unnecessary whenever the viewing point is distant
since most of the details cannot be appreciated because of
the small size of the rendered model [4]. On the contrary,
a low LOD results in a poor visualization quality whenever
the object is close to the viewer. As a matter of fact, the
complexity of the visualized model must be accurately tuned
and adapted according to the 3D model and user motion.
This problem is very similar to the rate adaptation problem in
video streaming [11]–[13]. In the AR/VR case, the perspective
projection corresponds to the transmission channel (the more
distant, the lower transmission capacity), the LOD (i.e., the
visual quality of the original displayed content) to the coding
bit rate, the update frequency V of rendering (measured in
Frames per Second (FPS)) to the frequency and length of
stalls. For this reason, it is possible to model the quality-
based optimization in a VR/AR application as a dual problem
of quality maximization given complexity constraints on the
LOD level:

minL s.t. Q(L,p,o) > Q0

FPS(L) > FPS0
(1)

The quality function Q(·) is affected by the LOD L, the
position p and the orientation o of the viewer with respect
to the location of the virtual object, while the refresh rate FPS
is related to the computational load on the GPU and affected
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(a) Death Valley (b) Stanford Dragon (c) Lackock Abbey (d) Mercedes-Benz

(e) Thais Statue (f) Notre Dame (g) Lidded Ewer (h) Owl (i) Pagoda

Fig. 1: The set of 3D models that compose our dataset. Models from (a) to (g) compose the training set. Model (h) is used as
validation set, and model (i) as test set. All the 3D models are considered with no attributes (e.g., texture, normal mappings,
etc.).

by the characteristics of the displayed 3D model. Q0 and FPS0
are the quality and frame rate at the original LOD L0.

In literature, such problem has been investigated for videos
as a quality maximization strategy under bandwidth constraints
[14]. Several HTTP Adaptive Streaming (HAS) strategies
propose packet dropping strategies to tune the transmission
stream while minimizing the quality decrement [15]–[19].
Most of these strategies rely on linear programming solvers
on simplified parametric rate and quality models. Recent
works have addressed this problem by exploiting deep learning
solutions [20]–[22].

This task has become even more challenging for AR/VR
applications since 3D models are heterogeneous and require
different rendering capabilities. In this contribution, we pro-
pose a deep learning approach that can predict the Structural
Similarity Index (SSIM) score [23] of a model and the optimal
number of vertices for 3D mesh representation from a spe-
cific viewpoint. Assuming that multiple version with varying
LODs are available, our approach allows selecting the optimal
versions of the model under different viewing conditions in
immersive and interactive applications.

The following sections will provide further details about the
overall procedure.

III. SCENE ANALYSIS AND EVALUATION METRICS

The adopted experimental setup consists in a set of 9 stan-
dard three-dimensional mesh models (Fig. 1) obtained from the
Stanford 3D Scanning Repository [24], and online 3D model
platforms such as Sketchfab, Turbosquid, and CGtrader. The
selected 3D models present different characteristics in terms of
shape and complexity, to have a wide model variability within
our dataset. For each model we generate three additional

versions, using the decimate modifier in Blender (Fig. 3).
Such generated models correspond to different LOD, Li, of
the original model, with i = 1, 2, 3, indicating the level of
decimation. The original mesh corresponds to L0 for i = 0.

In order to optimize the model visualization, we considered
the objective quality of the mesh through the computation
of the SSIM, and the geometrical complexity of the model
measured by the number of vertices used for each viewpoint
as relevant elements. More details are given in the following
sections.

A. Intra-view SSIM

As preliminary study, we evaluate the objective quality of
the 3D model through the SSIM [23]. The structural similarity
is computed between a target and a reference view. Such views
are rendered in Unity3D, using the original high-quality mesh
at LOD L0 for the reference view, and its lower resolution
versions at LODs Li with i = 1, 2, 3 for the target ones.

The viewpoints are generated for a set of random camera
positions p = {p1,p2, ...,pn} around the 3D object. Such
positions are uniformly distributed in the area around the
3D model, which is scaled to fit a 1m×1m×1m box in the
Unity3D reference system, and centered around the origin of
the 3D axes, i.e., positioned in (0, 0, 0). This allows a uniform
sampling of the quality and complexity of the 3D model
viewed from any direction. Each camera pose includes both
position and rotation coordinates (9 Degrees of Freedom) and
generates a 256 × 256 pixel image. Rotation coordinates are
not taken into account in the randomization since we assume
that the viewpoint is always directed towards the 3D object.

The performed analysis shows that larger SSIM values are
obtained when the camera is positioned farther away from the



(a) Intra-view SSIM vs distance (b) FPS vs vertex count

Fig. 2: Correlation plots of different output measures: (a) Correlation between the Intra-view SSIM and the distance from the
axes’ center (m). The highest LODs L1 (blue) achieves the highest values of SSIM, and the SSIM decreases while progressively
lowering the LOD with L2 (orange) and L3 (green); (b) FPS-frame vertex count correlation. FPS and log2 (V) are inversely
correlated, but FPS is upper-bounded to ∼ 60Hz for lower levels of log2 (V) (∼ 221). Different colors correspond to different
3D models: for each model 3 clusters (corresponding to the 3 LODs) are visible in correspondence of 3 different log2 (V);
each cluster is composed of samples with the same LOD but different values of p0 and pt.

3D object while smaller SSIM values are obtained for less
detailed objects (i.e., with lower LOD). This can be noticed in
Fig. 2a, where the blue dots refer to the SSIM values computed
for L1, the orange dots for L2, and the green ones for L3.

B. Inter-view SSIM
In a realistic scenario the user is usually free to move in the

environment. This movement is simulated through a random
walk, in a time interval spanning from T0 to T0 + δT , which
provides uniformly distributed positions taking x, z values in
the interval [−1, 1] and y ∈ [0, 1] (around the object).

To this aim, pairs of reference and target position (p0,pt)
are sampled among the generated positions. The reference
and target camera positions are determined supposing that
the distance of the target from the reference position is not
larger than 0.3m in the Unity3D measurement system, i.e.,
||pt − p0|| ≤ 0.3. The selection of this maximum distance
value is based on the assumption that in interactive applica-
tions, it is unlikely to have large and sudden camera jumps.
Also in this case, we suppose that the user is always oriented
towards the origin of the axes, i.e., where the 3D model is
placed. The faster the user is moving, the farther apart are
the reference and target camera positions, and the lower is the
SSIM. The computation is repeated varying the LOD in the
target position, i.e., the target frame is rendered from p0 with
LOD L0, while the target frame is rendered from pt with LOD
Lτ , where Lτ is sampled from {Li}i=1,2,3.

C. Frame Vertex Count
The user’s perceived quality is also affected by the number

of Frames per Second. However, such measure is strongly

dependent on the hardware capabilities of the rendering device.
Consequently, FPS is a variable measurement that can hardly
be predicted in a platform-independent way: for this reason,
in our experiments we considered instead the vertex count
measure, which is strongly correlated to the number of FPS.

First, we consider for each model the total vertex count
V , i.e., the total number of vertices of the considered mesh.
Then, we consider the frame vertex count as the number of
vertices of the mesh that are visible from a specific rendering
viewpoint and that directly affects the computational load of
the rendering process. It is defined as Vi ⊂ V | pi, where pi is
the rendering viewpoint. The larger is the number of vertices
to be rendered, the longer it takes to render a single frame
(and the lower is the refresh rate).

Fig. 2b justifies the selection of the frame vertex count as
a platform-independent variable with respect to the FPS. The
figure clearly shows that the correlation between the FPS and
the base-2 logarithm of the frame vertex count Vi. Below a
certain threshold of vertex count (around ∼ 221), the FPS is
limited to ∼ 60fps, as a standard display refresh rate is 60Hz,
and the FPS is capped to that frequency.

In addition, attributes like texture mapping and normals
can considerably increase the computational load of render-
ing. Such measurements will be included in future research
activities: in the current setup, objects are textureless and we
are focusing only on the geometrical complexity.

D. Orthographic Triangle Count Projections

In order to complete the characterization of model com-
plexity and rendering quality, some information about the



Fig. 3: Decimation procedure determines 4 different Levels
of Detail for each 3D model. L0 represents the highest LOD
(original 3D model), L3 the lowest LOD.

Fig. 4: Visual explanation of the OTC-projection mechanism.

three-dimensional structure of the 3D models needs to be
considered.

We define Orthographic Triangle Count projection (OTC-
projection) the procedure we used to extract information on the
objects’ 3D structure. It consists in extracting three 256×256
pixel bi-dimensional images from the three-dimensional view
of the model, which is bounded into a 1m×1m×1m box and
centered in (0, 0, 0). Such images correspond to the three
orthographic projections Ix Iy and Iz of the 3D model, along
the x, y, z axes respectively. The value of each pixel in
these projections is determined according to the number of
triangular faces of the mesh that are intersected by the normal
to the pixel surface. In other words, each pixel of each view
is computed by casting an orthogonal ray passing through its
center, and counting the number of triangles intersected by
that ray (Fig. 4).

IV. DATASET CHARACTERIZATION

The dataset has been generated starting from the original
9 models described in Section III. In particular, 7 models
have been used for training, 1 model (Owl) for validation
and 1 model (Pagoda) for testing, obtaining respectively 8.6k,
1.4k and 1k samples. This test set is used to evaluate the
deep learning model effectiveness for the generalization with
different and new 3D models. Each dataset sample includes:

• Projection images Ix, Iy , Iz: three 256 × 256 pix-
els bi-dimensional images corresponding to the OTC-
projections of the 3D model;

TABLE I: Additional specifications on the network.

CNN parameters 7664 (6.01MB)
FFN parameters 76546 (0.30MB)
Training samples 8600
Validation samples 1400
Test samples 1000

TABLE II: Hyper-parameters of the network.

Parameter Value
Batch size 256
Initial learning rate 0.001
lr decay (every 10 epochs) 0.99
Reduce-on-Plateau factor 0.7
Learning rate patience 10
Total epochs 150

• Reference position p0 = (x0, y0, z0): the reference
position of the camera in Cartesian coordinates;

• Target position pt = (xt, yt, zt): the target position of
the camera in Cartesian coordinates;

• Total vertex count V : the total number of vertices in the
3D mesh for LOD Lτ (used at pt).

The other metrics are used as ground truth labels:
• Inter-view SSIM: the SSIM between the frame rendered

from the camera in the reference position p0, at the
reference LOD L0, and the frame rendered from the
camera in the target position pt at the target LOD Lτ .

• Frame vertex count Vt: the number of visible vertices
among the total number of vertices of the mesh V at a
given LOD Lτ , from a given rendering viewpoint pt.

V. METRICS ESTIMATION PIPELINE

The overall pipeline developed within our approach is
reported in Fig. 5. It is composed of a Convolutional Neural
Network (CNN) and a Feed Forward Network (FFN). The
CNN branch encodes a set of 32 compact features in order
to characterize model complexity starting from the OTC-
projection images, mapped into 8 bit depth intensity maps.

CNN architecture: 4 convolutional layers are stacked in
a typical encoder structure. The convolutional layers have
padding 1 and respectively 4, 16, 16, 32 channels; each is
followed by a ReLU activation function and a 4x4 Max
Pooling layer with stride 4. The 32-sized feature vector pro-
duced at the output is concatenated with the reference position
p0, the target position pt, and the total vertex parameter
Vin = (1/VMAX) log2(V ), which corresponds to the base-
2 logarithm of the total vertex count V at target LOD Lτ

normalized over VMAX = log2(2
30) = 30, i.e., the nominal

maximum exponent of the total number of vertices (given the
statistics on our set of models).

FFN architecture: The FFN is built up of 3 block
units, with the first two blocks composed of a Multi-Layer-
Perceptron (MLP) with ReLU activation function and dropout
with rates 0.2 and 0.1, respectively. The last block, instead,
consists in a MLP followed by a Sigmoid activation. The



Fig. 5: Pipeline of the proposed approach. Three OTC-projections Ix, Iy, Iz are extracted from the 3D model and fed to a CNN
encoder. The output of the CNN is concatenated with additional features, i.e., the reference position p0, the target position pt

and the normalized logarithm of the total mesh vertex count at the target LOD Lτ , Vin. Such vector is fed to a FFN optimized
on the SSIM score and on the normalized logarithm of the frame vertex count Vin,t metrics.

network produces jointly the prediction of the inter-view
SSIM and a normalized frame vertex log-count, i.e., Vt,in =
(1/VMAX) log2(Vt), where the target position is pt.

Training procedure: The whole network is trained min-
imizing MSE loss between estimated and ground truth pa-
rameters using Adam optimizer. The network has a total of
84210 parameters (all trainable) for a total occupation of
6.31MB (Table I). The network hyperparameters are reported
in Table II. The learning rate is adapted with a reduce-on-
plateau scheduler reducing its value whenever there is no loss
reduction for patience number of epochs. All computations
were implemented integrating Unity3D version 2020.1.11.f1
and PyTorch v1.11. The Training has been performed on a
Tesla T4 GPU, and it takes almost 3.6 seconds to train a single
epoch. Instead, to perform an evaluation, it takes just a few
milliseconds.

VI. EXPERIMENTAL RESULTS

In this section we report the tests implemented to evaluate
the performances of the proposed approach.

Table III and Table IV include the results obtained on
the validation set and test set models, respectively. More
specifically, we report the running average of the ground
truth and predicted values for the Inter-view SSIM and the
normalized frame vertex count Vin for each target LOD (with
the running average of their respective estimation errors ∆).

Very satisfactory results are achieved on the frame vertex
count Vi predictions, as we obtain an error of 230×Vin,test ≈
5.86 vertices on the test set and of 230×Vin,val ≈ 1.07 vertices
on the validation set. Considering that the minimum number of
vertices V rendered from a specific viewpoint obtained in our
dataset is larger than 214 = 16384, the prediction error found

TABLE III: SSIM and Vin results obtained on the validation
set (Owl), averaged on the target LOD.

SSIM Vin

Lt True Pred. ∆ ↓ True Pred. ∆ ↓
L0 0.9498 0.9528 0.0083 0.8186 0.8198 0.0030
L1 0.9514 0.9532 0.0071 0.7943 0.7955 0.0028
L2 0.9506 0.9510 0.0079 0.7667 0.7682 0.0026
L3 0.9528 0.9530 0.0087 0.7308 0.7325 0.0028

0.8436 0.8532 0.0187 0.7212 0.7223 0.0034

TABLE IV: SSIM and Vin results obtained on the test set
(Pagoda), averaged on the target LOD.

SSIM Vin

Lt True Pred. ∆ ↓ True Pred. ∆ ↓
L0 0.9001 0.8660 0.0368 0.7222 0.7270 0.0056
L1 0.9029 0.8704 0.0353 0.6969 0.6894 0.0076
L2 0.9000 0.8675 0.0345 0.6701 0.6602 0.0099
L3 0.9004 0.8711 0.0327 0.6450 0.6340 0.0110

0.9008 0.8687 0.0349 0.6850 0.6766 0.0085

is negligible. The prediction of the Inter-view SSIM proves to
be effective, regardless a slight performance decrease for the
test set.

The effectiveness of our approach is proved reporting
predictions at different distances, we report the estimation
accuracy whenever the user is far or close to the object in
Table V and Table VI. We select two possible distance ranges
for the reference and target positions with respect to the
object, denoted as far (f) if

√
x2
i + z2i > 0.5 an close (c) if√

x2
i + z2i ≤ 0.5, with i ∈ {0, t}. The far-to-far case obtains

the largest values of SSIM since the model complexity is not
completely distinguishable when the camera is far from the
object. On the contrary, the close-to-close case obtains lower



TABLE V: SSIM and Vin results obtained on the validation
set (Owl), averaged in ranges of reference-target positions,
classified as far (f) and close (c).

SSIM Vin

p0 pt True Pred ∆ ↓ True Pred ∆ ↓
f f 0.8667 0.8705 0.0177 0.7227 0.7236 0.0051
c f 0.7312 0.7327 0.0155 0.7122 0.7125 0.0045
f c 0.7466 0.7274 0.0218 0.7146 0.7224 0.0078
c c 0.7583 0.7687 0.0279 0.7158 0.7174 0.0043

TABLE VI: SSIM and Vin results obtained on the test set
(Pagoda), averaged in ranges of reference-target positions,
classified as far (f) and close (c).

SSIM Vin

p0 pt True Pred. ∆ ↓ True Pred. ∆ ↓
f f 0.9124 0.8742 0.0417 0.7857 0.7073 0.0217
c f 0.8476 0.7612 0.0864 0.6876 0.7046 0.0170
f c 0.8569 0.7568 0.1001 0.6706 0.6977 0.0271
c c 0.8583 0.8159 0.0560 0.6818 0.6995 0.0176

SSIM values. The overall performance follows the trend of
the ground truth SSIM. Get worse when moving far-to-close
since models’ complexity makes the estimation hard.

In order to verify the proposed system in a real scenario, we
implemented a demo using the Barracuda library in Unity3D.
The main capability of the demo, is the automatic selection of
the LOD for the 3D model, based on the output of the network.
Through empirical tests, we observed that lower LODs are
selected when the 3D object is distant from the user, or when
the user is moving quickly around the object, and higher LODs
when the 3D object is viewed from a close perspective, or
when the user is still. Moreover, as mentioned in Section V,
the time overhead that derives from running the deep learning
model is reasonably limited thanks to the small and lightweight
size of the neural network.

VII. CONCLUSIONS

In this paper we presented a deep learning based approach
that aims at optimizing the visualization of 3D objects in an
interactive scenario, adaptively selecting the most suitable set
of parameters. The approach is based on the prediction of
the SSIM and the frame vertex count V (strictly correlated
with the FPS) metrics, in order to provide the best LOD for
3D meshes according to the user’s movement. The obtained
results show good performances, confirmed by the interactive
demo application. In future work, we foresee to extend the
number of adopted 3D models, as well as their complexity,
by considering attributes such as texture and normal maps
beside the geometrical features. Moreover, we foresee the
implementation of subjective tests to collect the quality as
perceived by the users.
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