

DEEP 3D MODEL OPTIMIZATION FOR IMMERSIVE AND INTERACTIVE APPLICATIONS

<u>Elena Camuffo</u>, Federica Battisti, Francesco Pham, Simone Milani Department of Information Engineering - University of Padova (IT)

Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

Outline

• Introduction: 3D Model Optimization in VR/AR applications.

+

3/17

0

Problem Assessment:

- Related Work & Problem Statement
- Problem Analysis: tradeoff Quality-Fluidity.

• Development:

- Analysis of Parameters and Metrics
- Data Analysis for Feature Selection
- Deep Learning based Metrics Estimation Pipeline.
- Experimental Results
- Conclusions

Introduction

- Growing **diffusion** of AR and VR systems has posed new and challenging problems.
- Systems require immersivity through:
 - Real-time rendering of 3D objects;
 - High fidelity resolution of environments;
 - Fluid interaction with the synthetic world.
- Adapt the LOD of 3D objects depending on the user's proximity and interaction with 3D objects' virtual environment.

4/17

Related Work

• Similar techniques employed in video transmission:

- Quality maximization strategy under bandwidth constraints.
- HTTP Adaptive Streaming (HAS) packet dropping to tune the transmission stream minimizing the quality decrement.
- Optimization strategies rely on:
 - Linear programming solvers.
 - **Deep learning** solutions.
- More challenging application to 3D models in AR/VR:
 - 3D models are heterogeneous
 - They require different rendering capabilities.

video	3D models perspective view Quality ↑		
TX channel			
Rate ↑			
Resolution \downarrow	LOD ↓		

5/17

- The LOD *L* of a 3D mesh model in AR/VR applications strongly affects the system efficiency and the quality perceived by the end user.
 - $\underbrace{\Delta t}_{\mathsf{slow movement}} \times$

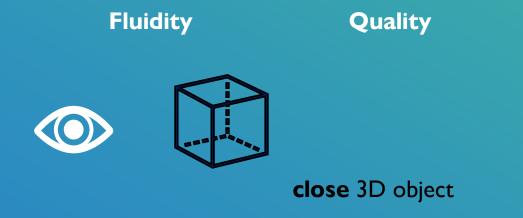
Fluidity

- **Quality-based optimization** is modeled as a dual problem of quality maximization given complexity, constraints on LOD level:

$$\min L \qquad s.t. \qquad Q(L, \boldsymbol{p}, \boldsymbol{o}) > Q_0$$
$$FPS(L) > FPS_0$$

6/17

• The LOD *L* of a 3D mesh model in AR/VR applications strongly affects the system efficiency and the quality perceived by the end user.


• **Quality-based optimization** is modeled as a dual problem of quality maximization given complexity, constraints on LOD level:

$$\min L \quad s.t. \quad Q(L, \boldsymbol{p}, \boldsymbol{o}) > Q_0$$
$$FPS(L) > FPS_0$$

6/17

• The LOD *L* of a 3D mesh model in AR/VR applications strongly affects the system efficiency and the quality perceived by the end user.

• Quality-based optimization is modeled as a dual problem of quality maximization given complexity, constraints on LOD level:

 $\begin{array}{ll} \min L & s.t. & Q(L, \boldsymbol{p}, \boldsymbol{o}) > Q_0 \\ & FPS(L) > FPS_0 \end{array}$

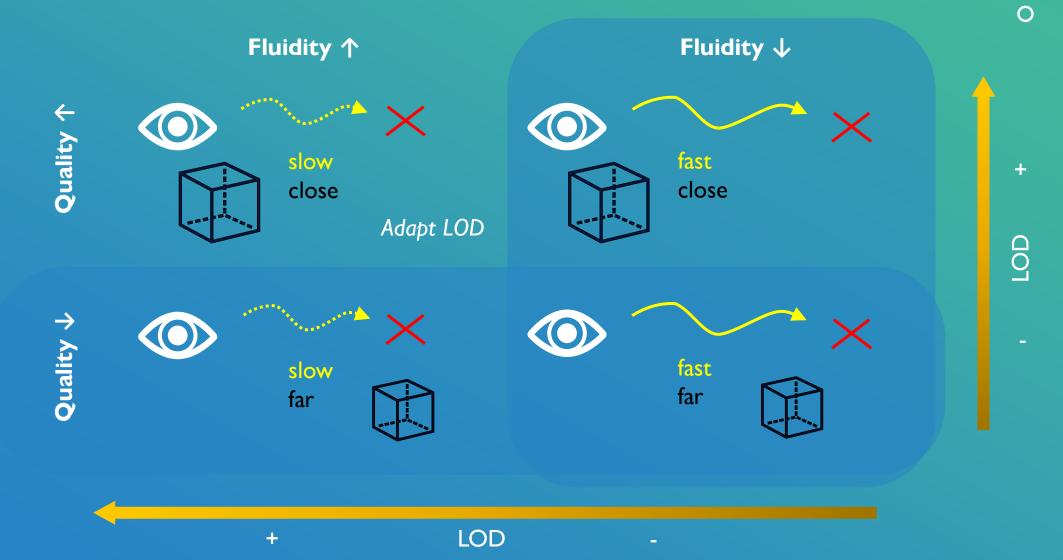
6/17

• The LOD *L* of a 3D mesh model in AR/VR applications strongly affects the system efficiency and the quality perceived by the end user.

Fluidity

Quality

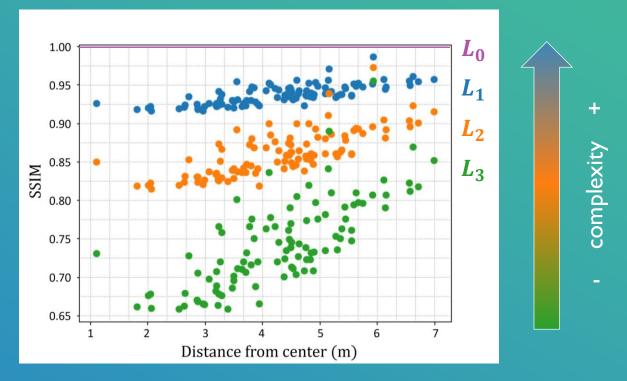
far 3D object


• **Quality-based optimization** is modeled as a dual problem of quality maximization given complexity, constraints on LOD level:

 $\min L \qquad s.t. \qquad Q(L, \boldsymbol{p}, \boldsymbol{o}) > Q_0$ $FPS(L) > FPS_0$

6/17

Problem Analysis


+

7/17

INTRA-VIEW SSIM

- Suppose the viewer is **static**.
- Measure quality varying LOD. SSIM (L_0, L_t) , t = 0,1,2,3
- Keeping LOD fixed:
 - Greater distance \uparrow , greater SSIM \uparrow
- Keeping distance fixed:
 - Greater LOD $L \uparrow$, greater SSIM \uparrow

+

8/17

0

 $L_0 > L_1 > L_2 > L_3$

INTRA-VIEW SSIM

- Suppose the viewer is **static.**
- Measure quality varying **LOD**.

+

9/17

0

INTER-VIEW SSIM

- Suppose the viewer is **moving.**
- Measure quality varying **position**.

INTRA-VIEW SSIM

- Suppose the viewer is **static**.
- Measure quality varying **LOD**.

+

9/17

0

INTER-VIEW SSIM

- Suppose the viewer is **moving.**
- Measure quality varying **position**.

VERTEX COUNT

- Total number of vertices of a mesh.
- Measure complexity of the mesh.

INTRA-VIEW SSIM

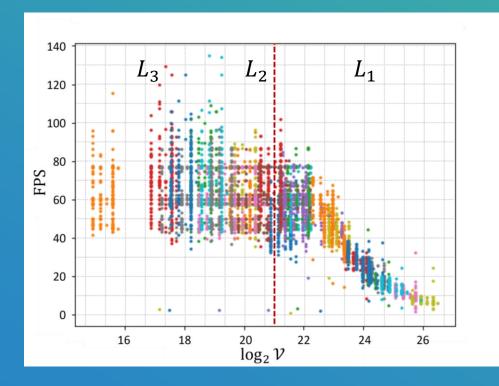
- Suppose the viewer is static.
- Measure quality varying **LOD**.

+

9/17

0

INTER-VIEW SSIM


- Suppose the viewer is **moving.**
- Measure quality varying **position**.

VERTEX COUNT

- Total number of vertices of a mesh.
- Measure complexity of the mesh.

FRAME VERTEX COUNT

- Total number of vertices **from a view**.
- Measure rendering power needed related to complexity.

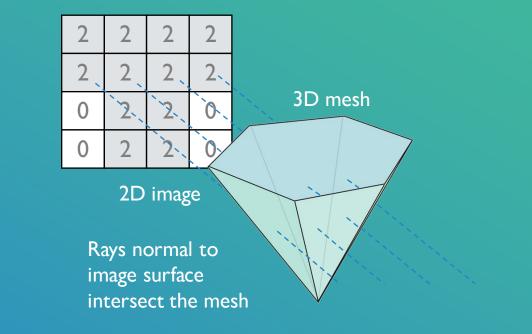
different colors = different models

• **FPS is dependent on the device**: some screens cap FPS to 60Hz.

10/17

0

• Measure fluidity with another metric: frame vertex count is directly related to FPS, without suffering capping.


FRAME VERTEX COUNT

- Total number of vertices **from a view**.
- Measure rendering power needed related to complexity.

+ 11/17 O

ORTOGRAPHIC TRIANGLE COUNT PROJECTIONS

- Projection of the 3D object along x-y-z axes.
- Each pixel value corresponds to the number of faces intersected by the normal to the pixel center.
- Outline a **shape** of the object defining its **complexity**.

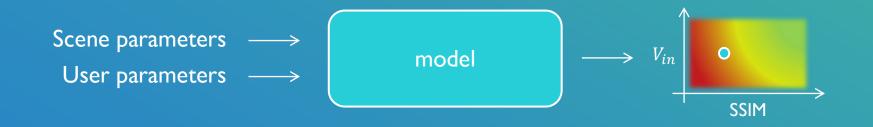
Objectives

• **Optimize LOD** adaptively, maximizing the **quality**.

OBJECTIVES:

- Keep sufficient **quality**:
 - adapt the LOD to the **distance** of viewer from 3D object.
- Keep sufficient **fluidity**:
 - adapt the LOD depending on the **velocity** of movement.

DEEP NEURAL NETWORK:


- For 3D model at given LOD estimate:
 - Inter-view SSIM: actual quality.

+

12/17

0

• Frame vertex count: actual 3D model complexity.

No original reference scene > you want to know if **quality is ok or not** > if not decrease LOD

Setup Analysis

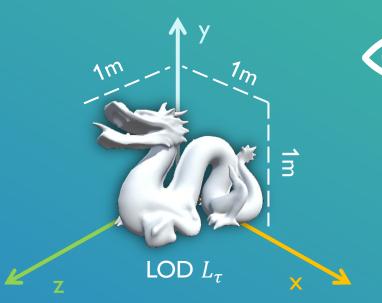
CONDITIONS:

1. The viewer is **moving**.

+

13/17

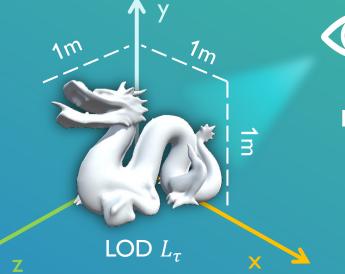
0


Move Fast \rightarrow decrease LOD \downarrow **Move Far** \rightarrow decrease LOD \downarrow

Setup Analysis

CONDITIONS:

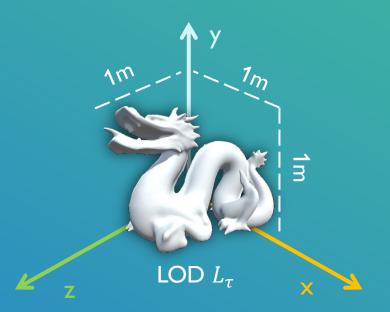
- 1. The viewer is **moving**.
- 2. The 3D object is placed in the **axes' origin**.

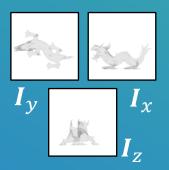

Move Fast \rightarrow decrease LOD \downarrow **Move Far** \rightarrow decrease LOD \downarrow

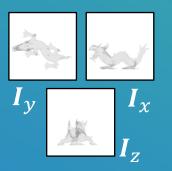
Setup Analysis

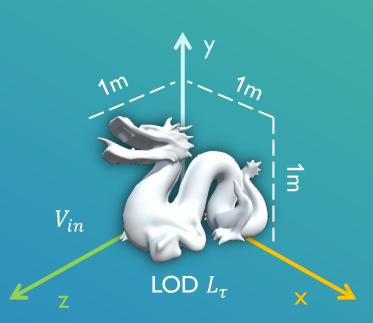
+ 13/17 O

CONDITIONS:


- 1. The viewer is **moving**.
- 2. The 3D object is placed in the **axes' origin**.
- The viewer always looks at the 3D object (orientation fixed).

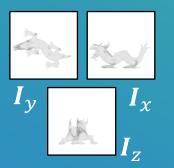

Move Fast \rightarrow decrease LOD \downarrow **Move Far** \rightarrow decrease LOD \downarrow


OTC-Projections

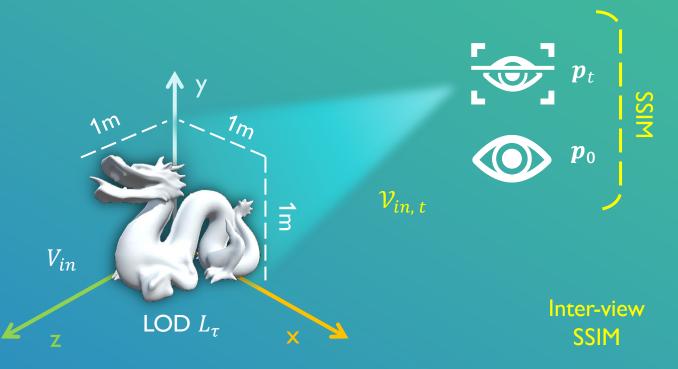


+ 14/17 O

OTC-Projections

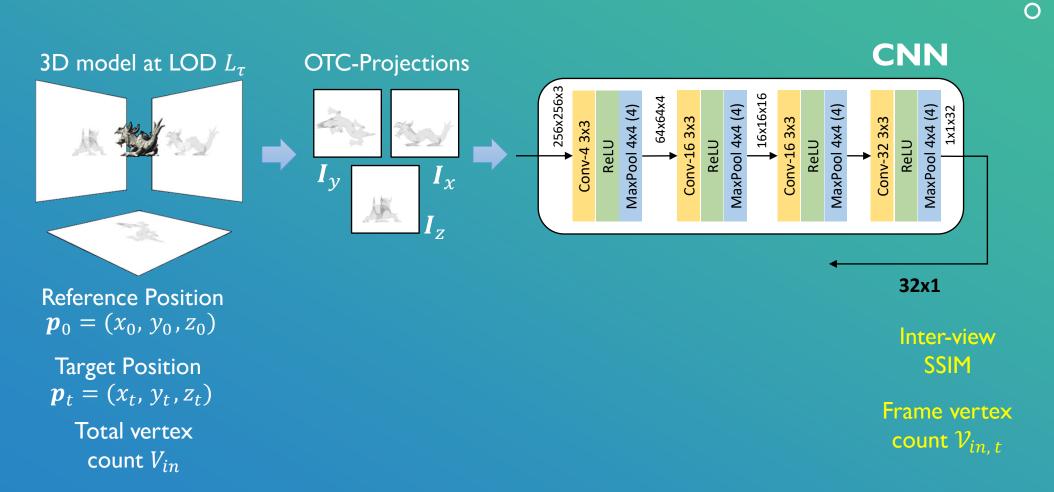


Reference Position $p_0 = (x_0, y_0, z_0)$ Target Position $p_t = (x_t, y_t, z_t)$ Total vertex count V_{in}



OTC-Projections

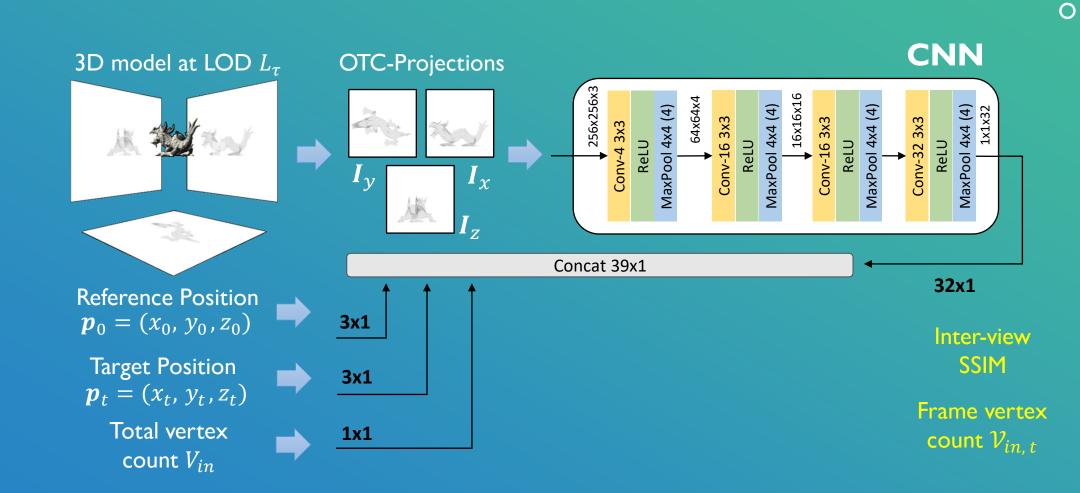
Reference Position $p_0 = (x_0, y_0, z_0)$ Target Position $p_t = (x_t, y_t, z_t)$ Total vertex count V_{in}



Frame vertex count $\mathcal{V}_{in, t}$

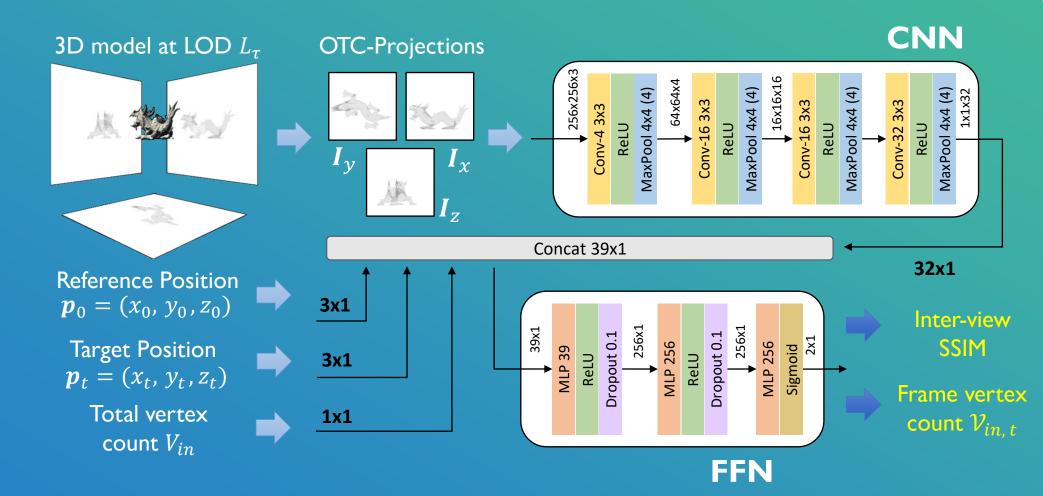
+

14/17


Estimation Pipeline

+

15/17


Estimation Pipeline

+

15/17

Estimation Pipeline

15/17 O

+

Results

Fixed LOD

 $\boldsymbol{p}_0 \ \boldsymbol{p}_t$

f

f

С

С

f

С

f

С

• Tested usability through **Unity3D DEMO simulation**.

Inter-View SSIM

Pred

0.8742

0.7612

0.7568

0.8159

True

0.9124

0.8476

0.8569

0.8583

• Training time ~2.6s per epoch, Inference time ~1ms per model.

+

16/17

		Inter-View SSIM			${\cal V}_{in}$		
	LOD	True	Pred	$\Delta \downarrow$	True	Pred	$\Delta \psi$
	L_0	0.9001	0.8660	0.0341	0.7222	0.7270	0.0048
Varying	L_1	0.9029	0.8704	0.0325	0.6969	0.6894	0.0075
Ň	L_2	0.9000	0.8675	0.0325	0.6701	0.6602	0.0099
a X	L_3	0.9004	0.8711	0.0293	0.6450	0.6340	0.0110
		0.9008	0.8687	0.0321	0.6850	0.6766	0.0084

 $\Delta \downarrow$

0.0382

0.0864

0.1001

0.0424

True

0.7857

0.6876

0.6706

0.6818

 \mathcal{V}_{in}

Pred

0.7073

0.7046

0.6977

0.6995

 $\Delta \downarrow$

0.0784

0.0170

0.0271

0.0177

 Predictions respect the behavior of True values:

• LOD
$$\downarrow$$
, $\mathcal{V}_{in} \downarrow$.

• Inter-View SSIM varies with p_0 , p_t : greater if viewer moves from far to far (f > f) or from close to close (c > c).

Conclusions

 Deep learning based approach optimizing the visualization of 3D objects in an interactive scenario, adaptively selecting the most suitable set of parameters. 17/17

- Future developments:
 - extend the **number of 3D models**, and their complexity.
 - considering attributes, e.g., texture and normal maps.
 - extend to subjective tests.

THANK YOU

Any questions?

+

0