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Abstract—Automation has revolutionized manufacturing and
established robots in the industrial assembly across a wide range
of applications. Nevertheless, in most practical scenarios, robots
are limited to repetitive tasks and there is still a long way to go
in terms of enabling them to operate in populated environments,
especially when dealing with robot motion planning. The research
progress of multi-agent decision-making strategies based on rein-
forcement learning provides a solution for solving the problems
faced by multi-robot systems in practical scenarios. In this paper,
we propose two original game theoretic models applied to multi-
robot environments. Simulations are led through the Nash-Q
learning algorithm in order to prove the theoretical analysis and
confirm their predicted trajectory dynamics. The results of this
work can be exploited as a tool to provide insights for multi-robot
control where agents are placed in similar scenarios.

I. INTRODUCTION

The application of robotic technologies in working envi-
ronments has led in the last decades to significant benefits for
what concerns productivity. In particular, mobile robots have
been introduced to assist humans in order to reduce fatigue,
increase precision, and improve the quality of products. Dur-
ing assistance tasks, a robot must be capable of performing
basic autonomous operations involving both navigation and
motion planning. Moreover, the task of controlling the motion
between multiple agents becomes challenging when many
robots are required to work together in the same environment.
This is due to the fact that, in practical scenarios, usually
different robots have different objectives to pursue. In the
past two decades, a wide range of these scenarios has been
studied extensively in the field of control theory. In fact, even
if the origin of control theory is related to the control of a
single system through different control methodologies, the
attention in this field has shifted to the control of multiple
interconnected systems since many benefits can be obtained
by replacing a unique complex system with several simple
systems [1]. However, recently, also techniques related to the
field of game theory have started to gain attention [2]–[7].
The application of game theory in engineering as a control
technique allows to model the interaction among different
agents, which make individual local decisions pursuing a
global and common objective, the Nash equilibrium. The
most common and natural setup exploiting game theory in
the robot framework involves multi-robotic systems where
a number of non-adversarial robots (but not necessarily ex-
plicitly cooperative) are aimed to accomplish a task while
being limited in communication and having limited resources,
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such as available energy. Typically, these kinds of multiagent
environments are modeled as stochastic games. A stochastic
game is a theoretical model representing multi-state multi-
agent environments having Markovian property and a stochas-
tic inter-state transition rule, and can be used to model inter-
agent interactions in such environments. Current frameworks
for stochastic games assume perfectly rational agents, which is
an assumption that is violated in a variety of real-world scenar-
ios, e.g., human-robot interaction. However, when multi-robot
scenarios are concerned, this assumption is more realistic. In
practice, typically agents don’t know their reward functions or
state transition probabilities, which means that in order to find
the Nash Equilibrium of the game, a learning problem arises.
If an agent directly learns about its optimal policy without
knowing either the reward function or the state transition
function, such an approach is called model-free reinforcement
learning [13]. Research investigating reinforcement learning
techniques in the context of multi-agent robotic systems have
been particularly interesting in the last years since a wide
range of algorithms have been developed for solving these
games [8]–[13]. So far, the standard setting which has been
used as a reference for the learning of these algorithms is
the one of two-dimensional grid games, where a number of
robots are placed on square cells and are allowed to move in
4 directions: Up, Down, Left and Right. On the other hand,
this simple structure lacks in modeling aspects that sometimes
are fundamental when dealing with the dynamics in trajectory
control.

In this paper, we examine and simulate two original
game-theoretical models, where new topological scenarios
are considered. In particular, the first one concerns two
drones in a three-dimensional grid environment, where cells
are considered as voxels, whereas the second involves two
robots in a two-dimensional grid, where cells are defined as
hexagons. The specific choice of these settings is based on
the fact that similar scenarios can be encountered in real-
world situations when multiple robots are located in the same
environment. This project aims at applying the strength of
game theory in order to infer some insights regarding the
robots’ coordinated motion control and provide an extension
to the results developed so far in this field. The rest of
this paper is organized as follows. Section II reviews the
applications of game theory related to robot motion control
problems already existing in the literature. Section III provides
the background theory related to stochastic games which
have been exploited in order to solve the games. Section
IV and V present two original scenarios and discuss some



results. Section VI concludes the paper and outlines the main
guidelines and possible expansions for future work.

II. RELATED WORK

In the past few years, the use of game theory has grown
extensively in the robotic research community. In fact, it has
been exploited for representing, comparing, and providing in-
sights to a wide class of problems in robotics. As an example,
game theory has been used in robust control for the landing an
aircraft [6] or Robotic Manipulators [7]. LaValle and Hutchin-
son [2] were among the first who proposed game theory
for the high-level planning of multiple robot coordination. In
this context, relevant applications include a multi-robot search
for several targets [3], the shared exploration of structured
workspaces like building floors [4], or coalition formation
[5]. In parallel, recently the interest in the implementation of
game theoretical techniques in conjunction with reinforcement
learning (RL) increased significantly. Single-Agent RL has
seen wide application in robotics, such as in robotic arm
control [14], service robots [15] and autonomous robotic
nanofabrication [16]. In particular, single-agent methods have
been applied in a straightforward fashion also to each agent
in multiagents domains such as robotic soccer [17]. However,
as recognized in [13], by doing so the familiar theoretical
guarantees no longer apply since the environment can no
longer be considered as stationary. The actual extension of
reinforcement learning techniques from single-agent to multi-
agent robotic environments includes two main classes of
learning algorithms, called adaptive learning algorithms and
equilibrium learning algorithms. The main difference between
these two is that in the latter case agents are calculating
an equilibrium solution assuming that their opponents are
rational, and their convergence is limited to a number of
cases where these equilibria are identifiable. The adaptive
learning agents, on the contrary, make no assumptions about
their opponents’ rationality, learning capabilities and the so-
lution type they are searching. These learning algorithms are
proven to be able to converge in self-play (i.e., when learning
”against” agents that are using the same learning algorithm)
to an equilibrium solution in a wide variety of repeated
matrix games. Among adaptive algorithms, the ones which
have been exploited more frequently are Infinitesimal Gradi-
ent Ascent (IGA) [8], Policy Hill-Climbing (PHC) [9] and
Adaptive Play Q-learning (APQ) [10]. Regarding equilibrium
learning algorithms instead, it is possible to mention popular
techniques such as Minimax Q-learning [11], Friend-or-foe
Q-learning [12] and Nash Q-learning [13]. In particular, the
latter was the one that was exploited in our simulations. All
these techniques were empirically tested by their respective
authors on the different test benches. However, although these
algorithms were tested on a number of repeated matrix games
and on some examples of stochastic games [13], a number
of questions is remaining whether these algorithms are well
extensible to the general form of stochastic games. Our study
brings the contribution of using more advanced underlying
models than those already existing in the literature, providing

thus a first proof of their effectiveness in a wide variety of
possible new settings.

III. THEORETICAL BACKGROUND

In this section, we provide the theoretical framework which
is needed in order to understand the applications investigated
in this paper. According to [26]:

Definition 1. A robot is a physically situated intelligent agent,
i.e., a system that perceives its environment and takes actions
which maximize its chances of success.

A robot can move in the environment and its position at
time t is generally denoted with xt. The temporal sequence
of locations, or path, is given as XT = {x0, x1, x2, . . . , xT },
where T ≤ ∞ denotes the terminal time, at which the
game ends. The initial location x0 often serves as a point
of reference for the estimation algorithm. We define ut the
odometry that characterized the motion between time t−1 and
time t, obtained from the robot’s wheel encoders or from the
controls given to those motors. Therefore the sequence UT =
{u0, u1, u2, . . . , uT } characterizes the relative motion of the
robot, given by the sequence of its actions. Let m denote the
map of the environment, which is supposed to be static, i.e.,
time-invariant. The robot measurements establish information
between features in m and the robot location xt. If we assume,
without loss of generality, that the robot takes exactly one
measurement (observation) at each point in time, the sequence
of measurements is given as ZT = {z1, z2, z3, . . . , zT }.

Definition 2. The localization problem [21] is the problem to
obtain the path or current position of the robot x0:T given the
robot’s controls u1:T and observations z1:T .

Localization is needed in order to perform motion planning,
i.e., the ability for an agent to compute its own collision-free
path motion towards certain goal. Motion planning is per-
formed knowing the robot own geometry and kinematics, its
initial and goal positions, and the geometry of the environment
supposing static obstacles. These definitions show that robots’
scenarios fit the framework of stochastic games, explained
below.

Stochastic games model multi-agent systems with discrete-
time and non-cooperative nature, meaning that players pursue
their individual goals and cannot form an enforceable agree-
ment on their joint actions. In a stochastic game, agents choose
actions simultaneously. The state space and action space are
assumed to be discrete. A formal definition is the following:

Definition 3. An n-player stochastic game Γ is a tuple〈
S,A1, . . . , An, r1, . . . , rn, p

〉
, where S is the state space, Ai

is the action space of player i, ri : S×A1×· · ·×An → R is the
payoff function for player i, p : S ×A1 × · · · ×An → ∆(S)
is the transition probability map, where ∆(S) is the set of
probability distributions over state space S.

Given state s, agents independently choose actions
a1, · · · , an, and receive rewards ri(s, a1, · · · , an), i = 1 · · ·n.



The state then transits to the next state s′ based on fixed
transition probabilities, satisfying the constraint:∑

s′∈S
p
(
s′ | s, a1, . . . , an

)
= 1 (1)

General-sum stochastic games allow the agents’ rewards to be
arbitrarily related. As special cases, zero-sum stochastic games
are instances where agents’ rewards are always negatively
related. In a discounted stochastic game, the objective of each
player is to maximize the discounted sum of rewards, with
discount factor β ∈ [0, 1). A strategy π is defined as a plan
for playing a game. Here π = (π0, . . . , πt, . . .) is defined over
the entire course of the game, where πt is called the decision
rule at time t. A decision rule is a function πt : Ht → ∆(A),
where Ht is the space of possible histories at time t, with each
Ht ∈ Ht, Ht = (s0, a0, . . . , st−1, at−1, st) , and ∆(A) is the
space of probability distributions over the agent’s actions. π
is called a stationary strategy if πt = π̄ for all t, that is, the
decision rule is independent of time. π is called a behavioral
strategy if its decision rule may depend on the history of the
game play, πt = ft (Ht). If we let πi be the strategy of player
i, then for any given initial state s, player i tries to maximize:

vi
(
s,π1,π2, . . . ,πn

)
=

∞∑
t=0

βtE
(
r1t | π1,π2, . . . ,πn, s0 = s

)
(2)

At this point, we can formally define the concept of Nash
Equilibrium (NE) for stochastic games.

Definition 4. In a stochastic game Γ, a Nash equilibrium is
a tuple of n strategies

(
π1
∗, . . . ,π

n
∗
)

such that for all s ∈ S
and i = 1, . . . , n,

vi
(
s,π1

∗, . . . ,π
n
∗
)
≥ vi

(
s,π1

∗, . . . ,π
i−1
∗ ,πi,πi+1

∗ , . . . ,πn
∗
)

for all πi ∈ Πi, where Πi is the set of strategies available to
agent i.

The meaning of a NE is that of a joint strategy where
each agent’s is a best response to the others’. In general, the
strategies that constitute a NE can be behavioral strategies or
stationary strategies. The result of Fink [18] proved that every
n-player discounted stochastic game possesses at least one
NE in stationary strategies. In this paper, we limit our study
to stationary strategies. Therefore if a state is visited multiple
times, the players’ choices would be the same each time. Non-
stationary strategies, which allow conditioning of action on
history of play are relatively less studied in this framework.
Finally, the theoretical foundations of multi-agent agent Q-
learning for general-sum stochastic games can be given. For
an n-agent system, we define a Nash Q-value as the expected
sum of discounted rewards when all agents follow specified
Nash equilibrium strategies from the next period on. More
precisely:

Definition 5. Agent i’s Nash Q-function is defined over(
s, a1, . . . , an

)
, as the sum of Agent i’s current reward plus its

future rewards when all agents follow a joint Nash equilibrium

strategy. That is,

Qi
∗
(
s, a1, . . . , an

)
= ri

(
s, a1, . . . , an

)
+

+β
∑

s′∈S p
(
s′ | s, a1, . . . , an

)
vi
(
s′,π1

∗, . . . ,π
n
∗
) (3)

where
(
π1
∗, . . . ,π

n
∗
)

is the joint Nash equilibrium strategy,
ri
(
s, a1, . . . , an

)
is agent i’s one-period reward in state s and

under joint action
(
a1, . . . , an

)
, vi
(
s′,π1

∗, . . . ,π
n
∗
)

is agent
i’s total discounted reward over infinite periods starting from
state s’ given that agents follow the equilibrium strategies.

Before giving basic idea of the Nash Q-learning algorithm
(details can be found in [19]), which allows to evaluate these
Nash-Q functions, we need to clarify the distinction between
Nash equilibria for a stage game (one-period game), and for
the stochastic game (many periods).

Definition 6. An n player stage game is defined as(
M1, . . . ,Mn

)
, where for k = 1, . . . , n,Mk is agent k’s

payoff function over the space of joint actions, Mk ={
rk
(
a1, . . . , an

)
| a1 ∈ A1, . . . , an ∈ An

}
, and rk is the re-

ward for agent k.

If now we let σ−k be the product of strategies of all agents
other than k, σ−k ≡ σ1 · · ·σk−1 · σk+1 · · ·σn, we have:

Definition 7. A joint strategy
(
σ1, . . . , σn

)
constitutes a Nash

equilibrium for the stage game
(
M1, . . . ,Mn

)
if, for k =

1, . . . , n

σkσ−kMk ≥ σ̂kσ−kMk for all σk ∈ σ̂
(
Ak
)

In the Nash Q-Algorithm, at each time t, the i-th agent
observes the current state and takes its action. After that, it
observes its own reward, actions taken by all other agents,
others’ rewards, and the new state s′. It then calculates a NE
π1 (s′) · · ·πn (s′) for the stage game

(
Q1

t (s′) , . . . , Qn
t (s′)

)
,

and updates its Q-values according to:

Qi
t+1

(
s, a1, . . . , an

)
= (1− αt)Q

i
t

(
s, a1, . . . , an

)
+

αt

[
rit + βNashQi

t (s′)
] (4)

where: NashQi
t (s′) = π1 (s′) · · ·πn (s′) ·Qi

t (s′)

This general framework will be used in the following sections
to analyze the considered games.

IV. SCENARIO I

The first scenario consists of a game involving two drones in
a three-dimensional environment. This choice is due to the fact
that generally in literature, only cases with mobile robots are
considered for game theory analyses. This scenario, instead,
provides an approach of solving problems of different type
that are as much common in robotics. The considered example
shows a couple of drones, that need to pass into a tight area
to get their respective own way in order to safely deliver their
packets. They need to avoid the other drone staying safely
with no collisions, but they need also to overcome the issue
in the lowest amount of time possible, therefore following the
shortest path to achieve their goals. The drones are chosen
for their easy representation, but this scenario can fit well



Fig. 1: Scenario I.

Fig. 2: Enumeration and moves, Scenario I.

also a manipulators’ environment. In particular if the two
manipulators have a sufficient level of autonomy, they must
decide their own trajectory in order to pick their respective
object. If the two considered manipulators are required to
share a small space, the problem occurs and a game theoretical
analysis comes into play. The game is dealt first assuming
conditions like in grid-game-1 of [13]; then the model is
adapted to another similar situation. Finally conclusions are
drawn on the results obtained.

A. Setting

The grid-game considered in scenario I is built on a 3D
grid, where each voxel represents a position, the robot can
occupy. Each robot can move only one voxel at a time, in six
possible directions: Up, Down, Left, Right, Forth, Back. The
two robots are placed in the opposite corners of the upper
floor and try to reach their goal on the opposite corner in
the lower floor. If they attempt to move into the same cell
(excluding a goal cell), they are bounced back to their previous
cells. The game ends as soon as a robot reaches its goal.
Reaching the goal earns a positive reward. In case both robots
reach their goal cells at the same time, both are rewarded with
positive payoffs. Note that, when the scenario is deterministic,
the two shortest paths that do not interfere with each other
constitute a Nash equilibrium, since each path (strategy) is a
best response to the other. Therefore, the objective of each

robot is to reach its goal with the minimum number of steps
without colliding. The robots do not know the location of their
goal at the beginning of the learning period. Furthermore, the
two robots choose their actions simultaneously. They observe
the previous actions of both, the current state (current position
of both) and their immediate rewards.

Figure 1 shows this game using three different representa-
tions. The action space of robot i, i = 1, 2, is Ai = {Up,
Down, Left, Right, Forth, Back}; the state space is S =
{(1, 2), (1, 3), . . . , (8, 7)}, where a state s = (l1, l2) represents
the two agents’ joint location. Robot i’s location is represented
by a position index, as shown in figure 2. The state transitions
are deterministic and the rewards that each robot can receive
are:
• 100 if it reaches the goal position.
• -1 if it collides with the other robot.
• 0 otherwise.

B. Analysis

Let the initial state be s0 = (8, 5), as in figure 1, and
the discount factor β = 0.99. The value of the game can
be computed for both players. In this case, as the game is
symmetric, we can restrict the analysis to robot 1 only.

The value of the game for robot 1 is defined, as in (2), as
its accumulated reward when both agents follow their Nash
equilibrium strategies,

v1(s0) = 0 + 0.99 · 0 + 0.992 · 0 + 0.993 · 100

= 97.0

This same value can be yield by different strategies. For
example figure 3 shows that, fixing the path of robot 2, robot 1
can reach the Nash Equilibrium following one of the proposed
different strategies.

Based on the values of each state, it is possible to derive
the Nash Q-values for robot 1 in state s0 using (3),

Q1
∗ (s0,Left, Forth) = −1 + 0.99 · v((8, 5)) = 95.1

Q1
∗ (s0,Down, Forth) = 0 + 0.99 · v((6, 7)) = 97.0

The whole set of Nash Q-values found is shown in table 1.
There are seven Nash Equilibria given by the couple of payoffs



Fig. 3: Different Nash Equilibrium Paths, Scenario I.

(97.0, 97.0).
Let’s assume now that the robots know their goal position.

The robots always knows also their own and the other robot’s
location and the moves are deterministic; consequently, the
game can be modeled as a stage game with complete and
perfect information. Figure 4 represents the first two stages of
such game.

At the beginning, the drones are placed on the same floor.
This means that in the first stage they are lead both to choose
the move Down. Then (Down, Down) is the dominant strategy.
This would also be the case if the number of floors would be
higher, since only in the last stage, where the two are in the
same floor of their objective, they would choose the strategy
that brings them to their goal.

The game is a collaborative game where the collaborative
strategy at stage 1 is to move Down until the lowest floor
(the one with the goals) is reached. That strategy is also
the stage Nash Equilibrium. At the second stage, the game
becomes no longer collaborative and no Nash Equilibrium in
pure strategy can be found. The game becomes an Odds and
Evens game; therefore the Nash Equilibrium is achieved using
mixed strategies, playing each move a half of the times.

This discoordination game of the second stage leads to two
different results: if the discoordination strategy is achieved,
the robots go to different cells; in this case the game ends in
the next following stage with payoff 100β for both. If instead
they attempt to go to the same cell, the stage game is repeated
until discoordination is achieved; in the latter case the payoff
is given by −1 +

∑T−1
t=1 βt · (−1) + 100βT for both.

This means that the best strategy that the two drones can
adopt is to reduce the problem to a coin flip, and postpone
the inevitable fight to the last round, which is discounted and
has therefore a lower impact on the final payoff. The result
suites well the drones’ situation, but fits almost better the
manipulators’ one. It suffices to think about that with a random
strategy the two robotic arms can collide and loose rounds
(additional rounds, not only the ones due to the collision of
the end effectors); instead if they first go down towards their
objective, then the movement is straightforward despite the
probability of collision of the end effectors.

V. SCENARIO II

The second scenario considered is instead a classical bi-
dimensional grid-game for mobile robots. The big difference
introduced here lies in the shape of the cells in the map. The

Right Forth Down
Left 97.0, 97.0 95.1, 95.1 97.0, 97.0
Back 95.1, 95.1 97.0, 97.0 97.0, 97.0
Down 97.0, 97.0 97.0, 97.0 97.0, 97.0

TABLE 1: Scenario I: Nash Q-values in state (8, 5)

hexagons were chosen since they represent the best shape to
cover a surface with the lowest number of edges. This shape
leads also to a largest set of moves for the players, and a more
complicate but more realistic design of the game. In addition,
this scenario can also be modeled as one of the state-of-art
problems in the field of robotics: given a formation of robots,
they have to pass through a tight passage and the original
formation cannot be preserved; one of the robots has to enter
the tight passage first, and the others after. There is no way
to decide which of the robot has to enter first, since they are
all equal, equally rational and initially at the same distance
from the passage; that is where game theory comes into play.
The hexagonal scenario models well the problem, as the goal
position is bounded at the top and reachable from multiple
cells, thing that would be not possible in a squared scenario.
The transition probabilities for some states are modeled to
represent the intrinsic cost to perform a non trivial maneuver,
as the agents are assumed to be non-holonomic mobile robots.

A. Setting

The map of scenario II is made of seven hexagonal cells.
Each robot can move only one cell at a time, in 6 possible
directions: North (N), South (S), North-East (NE), North-
West (NW), South-East (SE), South-West (SW). As in the
first setting, if the two robots attempt to move into the same
cell, they are bounced back to their previous cells. The game
ends as soon as a robot reaches the goal. Reaching the goal
earns a positive reward. The two robots cannot reach the goal
simultaneously, but in case one robot reaches the goal cell,
both are rewarded with positive payoffs. The robots know the
location of their goal at the beginning and choose their actions
simultaneously. They observe the previous actions of both, the
current state (current position of both) and their immediate
rewards.

The action space of robot i, i = 1, 2, is Ai = {North
(N), South (S), North-East (NE), North-West (NW), South-
East (SE), South-West (SW)}; the state space is S =
{(1, 2), (1, 3), . . . , (7, 6)}, where a state s = (l1, l2) represents
the two agents’ joint location. Robot i’s location is represented
by a position index. Figure 5 shows this game and the
enumeration of the cells. The rewards that each robot can
receive are:
• 100 if it reaches the goal position.
• 50 if the other reaches the goal position.
• -1 if it collides with the other robot.
• 0 otherwise.

The state transitions are deterministic except the followings: if
the current state is (5, 6) and the robots attempt both to reach
the goal, they succeed or remain in the previous state and they



Fig. 4: Extensive form representation of Scenario I as a Stage Game.

Fig. 5: Scenario II.

Fig. 6: Scenario II, stage 2.

never collide. Both succeed with probability p, and remain in
the previous location with probability 1− 2p, where p = 1/3.
If instead they are in state (4, 6), they have probability q = 1/2
to move to state (7, 6) and probability 1− q to remain in the
same state; in the latter case they receive a null reward since
the collision occurs in the goal position. Analogous reasoning
holds for state (5, 4).

B. Analysis

Let’s consider the initial state as s0 = (2, 3) and the
discount factor β = 0.99 as before. The optimal values of
the game for both players must be computed in order to
understand which strategy is convenient to be adopted. Since
the game is symmetric, the values are computed for player 1

only. Some states hold transition probabilities, thus only the
deterministic values are immediate to be computed:

v1((x, y)) = 0.99 · 100 = 99, x = 4, 5, 6, y = 1, 2, 3
v1((x, y)) = 0.99 · 50 = 45.5, x = 1, 2, 3, y = 4, 5, 6

Then, if one of the players goes to position 1, the game
becomes no longer probabilistic and comes to an end in the
next following stage. In the case both players choose position
1 or position 4, they earn negative rewards and the game is
repeated, discounted.

The other Nash Q-values can be computed only in expecta-
tion. However, if in the first stage neither of the deterministic
strategies is played, the game falls into one of the configura-
tions represented in figure 6. In these states, the players aim
at reaching their objective as soon as possible, and have no
incentive to go back to their previous state. The total value of
the game in the initial state can be computed using backward
induction: the analysis starts from the states of figure 6, the
optimal values are computed and used to draw conclusions on
the overall scenario.

Let’s define A1 = v1((5, 6)), A2 = v2((5, 6)), B1 =
v1((5, 4)), B2 = v2((5, 4)). The Nash Q-values in state (5, 6)
are reported in table 2, where the strategy of coming back is
not considered, as dominated. Here, the only Nash equilibrium
is the joint strategy (NE, NW), bringing the implication:

50 +
1

3
0.99Ai = Ai → Ai =

5000

67
≈ 74.63, i = 1, 2

Thus, the only Nash Equilibrium gives payoffs ( 5000
67 , 500067 ),

and implies that both players attempt to reach the objective,
since they cannot receive a negative reward, and one third
of the times they reach the goal, but another third of the
times they receive a positive reward. This strategy is not
collaborative, but selfish and myopic.

The Nash Q-values for case (4, 6) are shown in table 3.
For state (5, 4) they are analogous with the row player as the
column one and viceversa. Also here the Nash Equilibria is
unique, and given by the joint strategy (SE, NW). In fact the
strategy (NE, NW) is penalized by the discount factor and its



NW SW
NE 50 + 1

30.99A1, 50 + 1
30.99A2 100, 50

SE 50, 100 −1 + 0.99A1,−1 + 0.99A2

TABLE 2: Scenario II: Nash Q-values in state (5, 6)

N NE/NW
NE 25 + 1

20.99B1, 50 + 1
20.99B2 100, 50

SE 50, 100 0.99B2, 0.99B1

TABLE 3: Scenario II: Nash Q-values in state (4, 6)

N NW SW
N 4950

67 , 495067 45.5, 99 99, 45.5

NE 99, 45.5 −1 + 0.99R1,−1 + 0.99R2 99, 45.5

SE 45.5, 99 45.5, 99 −1 + 0.99R1,−1 + 0.99R2

TABLE 4: Scenario II: Nash Q-values in state (2, 3)

implication

25 + 1
20.99B1 = B1 → B1 = 5000

101 ≈ 49.50

50 + 1
20.99B2 = B2 → B2 = 10000

101 ≈ 99.01

cannot hold, since to be a Nash Equilibrium, the strategy
requires the condition:

25 +
1

2
0.99B1 ≥ 50→ B1 ≥

5000

99
≈ 50.50

which is not met.
Therefore only the joint strategy (SE, N) is a Nash Equi-

librium and gives payoffs (50, 100). This configuration under-
lines that the central player has a huge advantage, and certainly
reaches the goal first. The lateral player is led to leave the floor
to the other, in order to maximize its own payoff.

Observe that for the first subgame (referred to initial state
(5, 6)) the value of p is almost irrelevant. In fact the parametric
implication leads to:

100p+ 50p+ 0.99Ri(1− 2p) = Ri, i = 1, 2

→ Ri =
150p

0.01 + 0.99 · 2p
which is a Nash Equilibrium if satisfies the condition:

Ri =
150p

0.01 + 0.99 · 2p
≥ 50→ p >

1

102
≈ 9.80× 10−3

Then the analysis led is valid in every case, except if the
probability to win is extremely low.

Also in case the initial state is (5, 4), the probability value
has not an high impact on the analysis. In fact:

B1 =
50q

1− 0.99(1− q)
≥ 50→ q ≥ 1

B2 =
100q

1− 0.99(1− q)
≥ 50→ q ≥ 1

299
≈ 3.34× 10−3

and the first inequality cannot hold. Thus the strategy (NE,

NW) is never a Nash equilibrium.
At this point, the Nash Q-values in state s0 = (2, 3) can be

computed, and they are shown in table 4. There are multiple
Nash Equilibria, given by the joint strategies (NE, N), (N,
NW), (SE, NW) and (NE, SW). The payoffs given are always
(45.5, 99) or (99, 45.5) depending on which of the players
chooses the leading strategy of occupy the central position.
However contrarily to what is straightforward to think, the
best strategy is a mixed strategy that includes the possibility
of going to position 1, which is incredibly a strategy as good as
going North. On the other hand the central position guarantees
the higher payoff, but it is not to be played always, since the
probability of collision with the other agent is relevant.

The result is robotics terms is very accurate. It proves that
in a similar situation, the robots collaboration is essential to
cope with an issue like this, and pass through the tight road
in the least time possible. Nevertheless, observing the result
of state (5, 4), if an agent has to do a complex maneuver to
reach the goal, it has better to leave the floor to the other agent
and come after him. Finally the result of state (5, 6) proves
that the selfish strategy of getting closer to the goal trying to
take it first is never the best strategy for the global objective,
since in that case both the robots need to operate maneuvers,
and there is a big probability to loose rounds for nothing.

VI. EXPERIMENTAL RESULTS

In this section the results of the experiments lead are given.
The game tested is scenario I, which is provided with the
initial configuration, supposing the players do not know their
goal location at the beginning of the learning. We developed a
version of Nash-Q learning algorithm originally proposed by
Hu and Wellman. The choice of using this type of equilibrium
learning algorithm is motivated (as stated in section I) by the
fact that, the rationality assumption is reasonable when dealing
with robots. Matlab was used for the implementation, which
resulted not straightforward and required adjustments to obtain
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Fig. 7: Path length with different ε values.
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Fig. 8: Average value of the Q-function vs number of iterations.

good results. The function takes advantage of the Lemke
Howson algorithm [23] to find the First Nash Equilibrium,
as in the original version. The algorithm uses a multiplayer
ε-greedy exploration strategy, then the strategies to adopt can
be explore, exploit, or explore and exploit. In the implemented
version, the value of parameter ε, controls the probability of
choosing the exploit strategy. The average length of the path
to reach the goal is measured with different ε and the results
are given in figure 7. Notice that the average path length
is lower if the exploit strategy is used; moving the robot at
random in the space, keeps it into the play for a long time
and implies a waste. In addition, the number of steps per path
results being distributed according to a Geometric distribution,
which generally models the waiting time of an event, in this
case the reaching of the goal. The average length is quite
high on average because they do not know where their goals
are, but choosing always the best move of the situation the
average path length shortens. This result is also influenced by
the discount factor.

The results for the Q-function are reported in figure 8. The
behaviour is always convergent, but the speed of convergence
depends on the method chosen: for players following totally
an exploit strategy the convergence is faster with respect
to the case in which they play exploit half of the times
and explore the other times. The average values, computed
for both players, are similar to the grid-game-1 of [13],

reported in [28], to which scenario I is inspired. However the
convergence to a Nash equilibrium is not always guaranteed
by the Lemke Howson algorithm, used by the Nash-Q learning
during the game, and repeated tries have required to lead all
the configurations to convergence. Nevertheless, in the final Q-
matrix obtained, the Nash equilibria are computed neglecting
the moves that cannot be performed in that state. The result
is that, when the convergence is reached, it gives always one
of the seven Nash Equilibria reported in table 2.

VII. CONCLUSIONS

In this paper, two possible original extensions of the classic
two-dimensional grid games are investigated. The develop-
ment includes a simulation of the first game, led with our own
implementation of the Nash Q-algorithm. The results obtained
are promising as the Nash equilibria derived in the theoretical
analysis coincide with the ones given in the simulation. This
way, the prediction capability of the Nash Equilibria has been
verified, as well as the functioning of the Nash-Q technique
in this extended scenario. Moreover, the algorithm provides a
mean to evaluate the average path length metric in the first
game for different values of ε and prove the convergence of the
Q function. On the other hand, the impact of these analysis on
the actual meaning of the real situations is to be considered.
The overall result proves that the collaboration between the



agents is always the best choice even in scenarios which can
seem very different in appearance.

What we obtained so far is pretty satisfactory, but there is
still room for improvement, for example considering different
configurations for the transition probabilities or different dis-
count factors. In addition the analysis can be extended to other
situations. As a first extension, it is possible to simulate also
the second scenario, developed only theoretically, to confirm
the results. At the same time, these two games can be tested
with different types of reinforcement learning algorithms to
compare their performances. Possible developments involve
also the consideration of different scenarios, including for
example further elements of uncertainty, like obstructions in
cells or even additional numbers of players.
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