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Abstract—The quality of our life is highly influenced by the
quality of our sleep. The monitoring of individuals’ sleep can
ensure their well-being and allow the prevention of diseases, like
pressure ulcers and obstructive sleep apnea.
Sleep condition data can be gathered by means of smart beds and
other technologies. In this work, a public dataset of pressure map
images is exploited to provide a mean able to classify postures
and subjects.
The task is carried out with a multi-branch Convolutional Neural
Network (CNN), a deep learning model inspired by the Inception
module. The model is proved to outperform the state-of-art,
obtaining an accuracy of near 100% over the three main postures
(supine, left and right), and 91%, considering an extended set of
17 postures. This experiment was carried out following a leave-
one-subject-out (LOSO) validation scheme, to further investigate
the robustness of the model. Moreover, a test is performed on
the joint subject and posture recognition, using a k-fold cross
validation scheme, obtaining an accuracy higher than 99%.
However, the proposed CNN is not enough to exploit the temporal
correlation of frames in the sequences of images provided.
Therefore, a recurrent architecture is introduced.

The Convolutional Long Short-Term Memory (LSTM)
model proposed can achieve an accuracy near 86%, despite its
simplicity and its limited number of parameters. It is probably
the most promising for future researches, as the main purpose
of this scenario is to work with frame sequences and exploit the
temporal correlation of patients’ sleep data.

Index Terms—Smart Beds, Sleep Posture Monitoring, Deep
Learning, Convolutional Neural Networks, Recurrent Neural
Networks.

I. INTRODUCTION

A sufficient amount of quality sleep is essential to ensure
the physical and mental well-being of an individual; a night
of poor sleep can make a person feel fatigue on the next
day and long-term sleep disorders will even induce a range
of health problems. Numerous studies in the literature have
shown that sleep position is highly related to sleep quality.
For instance, supine posture is associated with obstructive
sleep apnea syndrome [1], which can cause breath pauses
overnight. Moreover, bed pressure ulcers are another serious
health disease caused by remaining a long period of time in
the same posture. Nowadays more than 2.5 million people
in the United States develop pressure ulcers every year [2]
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with a total annual care cost of over $11 billion [3]. An
ulcer may develop for example during a multi hour surgery
or in post-surgery recovery in bed-bound patients. Instead of
lengthy and expensive treatment, regularly turning the person
can effectively prevent the development of this category of
diseases. Therefore, monitoring the patients’ posture change
over time and alerting the caregivers if a repositioning is
needed, can guarantee a healthy permanence in hospitals.

The main focus of this work is on in-bed posture and
subject classification using electronic pressure mapping
systems. Many in-bed posture detection techniques exist, and
they are categorized depending on the employed technology
such as video cameras [4], wearable sensors [5], or pressure
mattresses [6] [7]. Among the aforementioned approaches,
pressure based pose detection systems avoid problems like
occlusion, lightening variations and users’ privacy.
In addition to classification of postures, smart beds
can enable automated recognition and identification of
users, which extends their applications for security and
authentication purposes, as well as personalization of smart-
home experiences.
Since the pressure mat provides a two-dimensional array of
pressure values, posture detection can be considered as an
image processing task.

Despite the number of existing frameworks to deal with
pressure maps data, the accuracy which is currently offered
ranges in between 80% to 90%. The difficulty arises from
the fact that the person-specific factors such as height, weight
and body shape can cause a high variability in pressure
images even if restricted to a specific posture. Moreover, the
pressure mapping systems limit the resolution of the acquired
image.
These issues can be addressed by applying effective
preprocessing techniques and deep neural networks
architectures as it is presented in this work. A public
pressure map dataset, PmatData [6] has been used to train
and test a deep multi-branch CNN. The proposed framework
is validated incorporating a leave-one-subject-out validation
scheme as well as a k-fold cross validation, in order to
compare the results with previous studies on the same
dataset [6] [7]. In addition, a novel approach is presented: it
consists in learning spatiotemporal features of consecutive
frames with a convolutional LSTM unit based neural network.



Fig. 1: Different postures present in the dataset.

The rest of this paper is organized as follows. In section
II the state-of-art works are described. Section III introduces
the processing pipeline and then a description of the dataset
and the preprocessing techniques is provided in section IV.
Finally, in section V the learning framework is given, and the
results are reported in section VI. Final conclusions are drawn
in section VII.

II. RELATED WORK

As this paper is mainly concerned with Deep Neural
Network models, the higher impact on this project concern
the whole setup and data manipulation of M. Heydarzadeh,
M. Nourani and S. Ostadabbas in [7] and the deep model of
Yan-Ying Li et al. in [4]. Other approaches, like the work of
G. Matar and G. Kaddoum employed a Feed Forward Neural
Network (FFNN) for the classification task in [6]; Mehrdad
Heydarzadeh et al. used an autoencoder to extract a relevant
features’ representation [8] and Zhou Tianyu et al. mixed a
CNN model with features manually extracted [9].

Up to now, researchers have applied different image pro-
cessing techniques to solve in-bed posture and subjects’
classification. In [6] it is possible to identify the first at-
tempt to classify subjects using bed posture data. Manually
extracted features were fed to a dense network, pre-trained by
incorporating a restricted Boltzmann machine. The authors
published their experimental dataset which is used in this
paper, too. However, they focused on subject classification in
just three standard postures: right, supine and left. Similarly,
[10] proposed a FFNN using as input HoG+LBP features
extracted from the pressure images for identifying 4 standard
postures. Most of the existent studies only focused on the
identification of few standard postures. But legs and arms
positions are also important factors for achieving quality sleep
and to avoid spinal alignment problems in the long term.

This is why in [7] a deep CNN is used to classify subject
and postures from a single frame of data. Both tasks are
accomplished simultaneously using a combined loss function.
They obtained high accuracy in identifying 17 in-bed postures
adopting a LOSO validation scheme, i.e. their model performs
well even on data considerably different from the training
ones.
In this work it is proposed an extension of the latter approach
which aims at extending its range of applicability. Temporal
features from consecutive in-bed posture frames are furtherly
taken into account.

III. PROCESSING PIPELINE

The subject and posture classification task is carried out by
exploiting the following processing pipeline:

1) Pressure images extraction from .txt files and prepro-
cessing.

2) Training of a deep learning model for classification.
The preprocessing is needed to improve the body shape

detection efficiency, as the original raw data are pressure maps,
thus limited resolution images subject to artifacts.

Several preprocessing techniques have been tested.
The selected one consists of two filtering steps (median
and thresholding) and a histogram equalization. This
preprocessing combination is shown to have a reasonable
impact on the outcome of the training, as it leads the models
to improve their performances and reduce their convergence
time.

Also a number of different models have been tested in order
to accurately solve the classification problem.

The most promising one, has been shown to be a multi-
branch CNN architecture, which roughly recalls the structure
of the Inception module [4]. This model presents in addition
some peculiarities proper of the state-of-art CNN model of [7],
like two SoftMax activation output layers, placed in parallel,
which allow to perform posture and subject classification at
the same time. For this reason, the chosen loss function is
modeled as

L = λLsubject + (1− λ)Lposture, (1)

where L(·) indicates the categorical cross-entropy loss func-
tion.

The multi-branch architecture is exploited to perform first
a posture classification with a LOSO validation scheme and
then a joint posture and subject identification, using a 10-
fold cross validation scheme. The subject identification is not
possible with the LOSO scheme as one subject at a time is
not included in the training.

On the other hand, being this model a CNN, it does not
consider the temporal correlation existing between pressure
images, indeed each posture presents bunches of sequential
acquired images. Therefore, a Convolutional LSTM model is
put beside the first one, to discuss a comparison of perfor-
mances, and it is proved to be effective too, holding a lower
number of parameters.

IV. SIGNALS AND FEATURES

Before going deeper into technical details, an overview of
the datasets and the preprocessing techniques applied is given.

A. Dataset

The experiment is based on a dataset of raw data provided
in .txt format files. The raw data are pressure map matrices,
collected by means of smart beds. Specifically, a Vista Medical
FSA SoftFlex 2048 system is used to acquire sequences of
64x32 pressure map matrices, with a sampling rate of 1Hz.
The pressure map matrices are the raw data collected, ideally
reporting numbers in range of [0−10 000] for each sensor (in
practice the highest value reached is 4095). The sequences are
held for approximately 2 minutes each for a total of around



120 per subject (but some sequences are shorter than others).
The experiment shows 13 subjects involved and 17 postures,
each belonging to one of the main three: supine, left and right.

The overall number of frames was of 20 024, but a margin
of 3 frames at the beginning, and 3 frames at the end was
removed together with some corrupted black frames, reducing
the dataset to 18 681 elements.

For the 10-fold experiment, a 10% of the dataset is retained
for testing, and a 10% of the training set is used for validation.

Fig. 2: Preprocessing flow visualization (supine posture). Note
the difference between (b) and (c) in the knees’ area.

B. Preprocessing

The preprocessing stage is involved with three steps, per-
formed before splitting the dataset and train the Network. They
consist of:

1) Median filtering with a 3x3 kernel.
2) Threshold filtering [11], applying:

h(x) =

{
x if x > T

0 otherwise
(2)

where T = 15, and x is the intensity of the pixel.
3) Histogram equalization (over the single channel of the

pressure map images).

The Median filter, used also by [7], is needed to reduce the
noise caused by the occasional malfunctioning of pressure
sensors, which manifests in artifacts on the image. In addition
it contributes to smooth the map and reveal the body shape.
The Threshold filter, instead, is used in combination with the
histogram equalization step, to perform the equalization along
the body shape while not affecting the background.

The application of this sequence of preprocessing steps
makes the images more distinguishable even from a human
eye (fig. 2). In addition, the joint application of these 3 steps
leads to an improvement in the training of the model itself,
rather than applying only a 3x3 median filter, as in [7].

V. LEARNING FRAMEWORK

As discussed above, the models used consist of a multi-
branch CNN and a convolutional LSTM architectures.

A. Multi-branch CNN architecture

Figure 3 shows the block diagram representing the struc-
ture of the implemented network. Inspired by the Inception
module, three branches has been stacked together. The main
block consists of Conv-BatchNorm-MaxPool-LeakyReLU and
it is replaced by Conv-BatchNorm-LeakyReLU where Max-
Pooling was not applicable. Each branch includes a combina-
tion of the above main blocks terminated by fully connected
layers. For each branch, different kernel sizes have been used
(3 × 3, 5 × 5, 7 × 7). As a result the multi-branch structure
introduces a parallel multi-scale analysis capable to catch mul-
tiple size patterns in pressure image data. All the features of
the three branches are then concatenated into one dimensional
vector of size 1024. Finally, the classification is achieved by
feeding the outcome to two dense layers (with dropout rate of
50%), followed by two SoftMax used to allow simultaneous
classification of subjects and postures. Each convolutional
block has been followed by an increasing dropout rate of 10%,
20%, 30%. The dropout layers allow the network to become
less sensitive to the specific weights of neurons. This results
in a network capable of better generalization and which is
less likely to overfit the training data. L2 regularization loss
was also employed for similar purposes using a coefficient of
σ = 0.004.
At the training stage the following hyper-parameters are
selected: batch size equal to 64, number of epochs equal to
40, Adam optimizer with variable learning rate minimizing
the mixed categorical cross-entropy loss (equation 1). The
learning rate, is set to the initial value of 2×10−3 and decayed
with a rate of 0.95 every 10 epochs.

As discussed in section III, two validation schemes are
adopted to validate the proposed method, k-fold and LOSO.
In the k-fold cross-validation the hyperparameter λ is set
to 0.5. On the other hand, in the LOSO scheme, subject
classification is not possible, since evaluation needs to be
done on the test subject. Therefore, in the latter case λ is
set to 0, since no improvement is shown in minimizing both
losses.

Data Augmentation− In order to test the network gen-
eralization abilities, a data augmentation operation is per-
formed. Due to the limited hardware capacities, each frame
is augmented of a factor 3, resulting in a total number of
56 043 images. Table 1 reports the geometric transformations
randomly applied to the pressure maps. In this case, the
training is performed with 50 epochs instead of 40.

Relative weight Transformation
50% Rotation of 180o

20% Translation by up to ±10% along x
20% Translation by up to ±10% along y
20% Rotation by up to ±10o

TABLE 1: Geometric transformations used for data augmen-
tation.



Fig. 3: Multi-branch CNN architecture scheme.

Fig. 4: Convolutional LSTM architecture scheme.

B. Convolutional LSTM architecture

Figure 4 illustrates the novel proposed framework to deal
with subsequent frames of in-bed postures. It consists of
2 stacked ConvLSTM layers with batch-normalization, tanh
activation fuction and 3D MaxPooling after the first one. The
layers have 16 (3 × 3) and 16 (3 × 3) filters, respectively.
The second ConvLSTM layer removes the temporal dimension
and its output is fed to a dense layer with ReLU activation
function, followed by a SoftMax activation.

In this architecture, pressure maps data belonging to the
same posture and subject, have been treated as sequential data
and not as isolated frames. The subdivision in bunches has
been performed as shown in figure 4.
In such cases an interesting approach is to use model based
on LSTM cells. Here, previous outputs are allowed to be
used as input while having hidden states. Therefore holding
information on previous data, the network is able to reuse
those information about just seen frames to make decisions.
However, LSTMs can not directly learn spatio-temporal fea-
tures from a sequence of images. This limitation is overcome
replacing the Hadamard product of the original LSTM with
the convolution operation (ConvLSTM) [12]. As a result data
that flow through the ConvLSTM cells keep the image input
dimension instead of being just a 1D feature vector.
Ideally, the cell state will not be reset until the entire time

sequence is fed to the network, but the training data are
provided to neural network in batches with sizes restricted
by the GPU memory capacity. When the input data consist
of sequential images, it is important to determine both the
number of frames in each input sample (the bigger, the more
long-term dependencies are captured) and samples in each
batch (the more, the better the model is able to generalize
and avoid overfitting).

In PmatData dataset, sequences length ranges from 60 to
207 frames. However only one reaches 207 and the average
length is about 100. Therefore the network is fed with tempo-
ral sequences that are 100 frames long with a batch size of 32.
The sequences shorter than 100 have been padded by repeating
the last frame and the longer ones have been cropped. Also
other settings have been tested. For instance, subsampling the
frame sequences by a factor of 5 and training with batch
size of 8, reduces training time and selects frames which
are temporally spread limiting their similarity. The network
is trained for 40 epochs, using Adam optimizer with learning
rate of 10−3, decayed of 0.95 every 10 epochs. Dropout layers
are inserted after each recurrent block with increasing rate of
10% and 20%, and after the dense layer with rate 30%. The
model is tested using LOSO validation scheme.



LOSO posture identification over 17 postures

Model Preprocessing Augmentation Hyper-parameters Accuracy Precision Recall F1 score
CNN ref. [7] m [7] no λ = 0.2 85.1 84.5 85.8 82.2
CNN ref. [7] m, t, e no − 88.9 86.7 88.7 85.8

Multi-branch CNN m, t, e no − 91.0 89.2 91.1 89.0
Multi-branch CNN m, t, e no no reg. 86.3 86.6 86.3 82.8
Multi-branch CNN m, t, e no 1 final dense 89.4 87.2 89.4 87.0
Multi-branch CNN m, t, e 3x − 90.4 90.9 90.3 90.5

Convolutional LSTM m, t, e no − 85.6 85.7 85.6 85.4
Convolutional LSTM m, t, e no subsampling (1/5) 82.0 83.1 82.0 82.1

TABLE 2: Comparison of models, preprocessing techniques and hyper-parameters settings. In the table, metrics are in % and
m, t, e stand for median, threshold and equalization, respectively. If not specified, λ = 0 and dropout/regularization are set as
in section V.

Fig. 5: Average Confusion matrix obtained using LOSO vali-
dation scheme on multi-branch model and data augmentation
(6th row of table 2); images are preprocessed as in sec. IV.

10-fold subject identification

Model Supine Left Right
FFNN ref. [6] 85.5 82.3 80.4
CNN ref. [7] 99.9 100 100

Multi-branch CNN 100 99.9 99.9

TABLE 3: Comparison between references data and accura-
cies (in %) found using multi-branch architecture for subject
identification with 10-fold cross validation scheme.

VI. RESULTS

Considering the multi-branch CNN model, the experiment
with 10-fold cross validation, results in a simultaneous
posture and subject recognition accuracy of near 100% over
17 postures. In addition, table 3 presents the results of subject
identification obtained training the model separately over the

Fig. 6: Accuracy curves for training and test sets as a function
of models and preprocessing techniques. LOSO validation
scheme has been used.

LOSO posture identification

Model Augm. Supine Left Right
CNN ref. [7] no 99.0 99.7 100

Multi-branch CNN no 100 100 100
Multi-branch CNN 3x 99.7 99.2 99.7

Convolutional LSTM no 98.1 94.3 98.3

TABLE 4: Comparison between references data and accura-
cies (in %) found using multi-branch architecture for posture
identification with LOSO validation scheme.

three standard postures. The values of accuracies reached
are very high and close to the results obtained with the
CNN model in [7]. This method, however, does not allow
to generalize well. Indeed, frames belonging to the same
sequence of a selected subject may appear in different sets
(train, test, validation), but they result to be very similar one
another, since the individual is lying in the same position all
the time long; consequently the classifier is led to recognize
the images’ position because very close to the ones it has
already seen, but it is not able to generalize, when new
images are tested (e.g. if a new subject is added).



Fig. 7: Example of errors committed by the multi-branch
model in the classification.

This is why LOSO scheme is a way more appropriate
validation procedure to prove the robustness of the model.
In this procedure, the training set is composed of all subjects
except one, used for testing. This way the network is tested on
images it has never seen before and this verifies its learning
capabilities. Table 4 illustrates the model performances in
the classification of the three main postures evaluated using
LOSO cross-validation. It can be observed that there is not
drop in accuracy with respect to the 10-fold cross validation
confirming the robustness of the proposed model. The LOSO
validation scheme has then been extended to the classification
of all 17 available postures. Figure 6 shows that the proposed
multi-branch CNN and the applied preprocessing techniques
lead to an improvement in accuracy compared to the CNN
of [7]. It can be observed that the multi-branch CNN model
quickly converges to a steady state and reaches the highest
training/test accuracies (red curves). The average accuracy
reached in the test set reads 91% after around 5 to 10 epochs,
while in the training set an accuracy of 100% is reached after
only 2-3 epochs, outperforming [7], whose training accuracy
convergence is slower and never reaches values higher than
98% (green curves). Table 2 reports the outcomes of several
experiments led on the dataset, exploiting different models,
different configurations of the networks and hyper-parameters.

The level of accuracy is confirmed also by the average
confusion matrix of figure 5, which is divided in sectors
corresponding to the three main postures, and reports almost
all zero values in the inter-class sections of the matrix.
As stated above, misclassified sub-postures fall all within
the correct main postures and the committed errors concern
sub-postures with subtle differences (figure 7). For instance,
variations of supine postures where bed inclination varies of
15o between sub-postures, result hard to be classified even for
a human eye.
Finally, data augmentation confirms the validity of the model
reaching an accuracy higher than 90% over 17 postures.

Considering the results obtained using the recurrent ar-
chitecture, they read almost 97% on average over the three
main postures and a reasonable 86% over all the 17 postures.
The metrics of the experiments led are reported in table 2,
while in figure 6 the outgoing of training and test curves
is shown (black curves). The average test accuracy is, as
expected, lower than the other methods, partly due to the lower

number of parameters this model holds, with respect to the
multi-branch CNN (almost 1/4). Moreover, as stated above,
subsequent frames of the same posture present low variance.
Thus, in this case, there are not significant temporal features
which can be extracted and further contribute to a more
accurate classification of the considered posture. However,
this is a good starting point for future developments, as it
involves also temporal features. With a powerful hardware
capability, the model could be largely improved and integrated
with additional features, or more meaningful ones.

VII. CONCLUDING REMARKS

A. Conclusions

From this work emerges that a multi-branch CNN model
using different kernel sizes, is able to learn an enhanced
feature representation of the input samples, and accomplish
both posture and identity recognition tasks.
The impact of the preprocessing significantly affects the final
outcome, increasing the accuracy of the model of near 4%.
But the model has to face some limitations deriving from the
dataset: quite large, but holding pressure data, thus limited
resolution images. Results from data augmentation and LOSO
validation scheme show that the method can be extended even
to larger datasets while maintaining an accurate classification
capability. Finally, reasonably good performances are also
achieved by the ConvLSTM model, even if there is still room
for improvement.

B. Future works

The ability of ConvLSTMs based neural networks to ex-
tract spatio-temporal features from a sequence of images is
appealing and is worth to spend some time to further develop
the recurrent model presented above. Extending the pressure
dataset including temporal signals such as heart rate, body
parts temperature and respiration rate may help to achieve
even more accurate systems and deeper understand sleeping
posture effects on an individual.

C. What we have learned

The major difficulty we have encountered lies in the great
similarity among the images of the dataset. They resulted
too much similar to perform a good analysis on the frame
sequences and to make a classic pseudo-random division of
the overall initial dataset. Also selecting the right model,
keeping safe this restriction, was not so easy.

The most important thing we have learned doing this
project, concerns how to build state-of-art model architectures
and components, from scratch, referring only to written pa-
pers. The drafting of this paper was also really helpful, to
improve our writing and also reading abilities for future works.
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