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1 Exercise - The cuckoo sound

Firstly loading the signal, it results very noisy. Lots of birds’ sound can be
heard but not the one of the cuckoo. It needs to be filtered. As the cuckoo
frequencies lay in the interval [640Hz, 1280Hz], we are expecting to find out a
band-pass filter which operates in that range of frequencies.

1.1 Linear Program - Type I

The pass-band of the filter is determined by the two frequencies set to fa =
640Hz and fb = 1280Hz. Starting with a linear program approach we thus
design a Type I band-pass filter setting the cutoff frequencies to:

fs1 = fa −Bt/2 = 560Hz, fp1 = fa +Bt/2 = 720Hz

fp2 = fb −Bt/2 = 1200Hz, fs2 = fb −Bt/2 = 1360Hz

where Bt = 160Hz is the transition bandwidth. Consequently the reference
behaviour is:

R(f) =


0, 0 ≤ f ≤ fs1
1, fp1 ≤ f ≤ fp2
0, fs1 ≤ f ≤ Fp

2

Fp is the sampling frequency extracted from the input audio source. The number
of samples is N = 100 (even because type I) and the weighting vector is set
as w = [10−3, 10−2, 10−3] so that to the main region of the band-pass filter
correspond the heaviest weights.
We proceed in performing the linear programming filter design. As the filter is
of type I, H0(f) has to be built as H0(f) = V · x where matrix V and vector x
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are build in the following way:

V =



2T cos(2πf N2 T )

2T cos(2πf(N2 − 1)T )

2T cos(2πf(N2 − 2)T )

...

T



T

︸ ︷︷ ︸
k×N

2 +1

x =



h0(0)

h0(T )

h0(2T )

...

h0(N2 T )



As the weighting vector is NOT w = 11, we use an empirical method to find
the stop-band attenuation As = −20log10(δs) = 34.1017dB and the pass-band
ripple Rp = 20log10(Hmax

Hmin
) = 0.77262dB, setting:

δs = max{|H0(f)|}, f ∈ [fs1, fp1] ∪ [fp2, fs2],

where
Hmax = max{|H0(f)|}, f ∈ [fp1, fp2],

Hmin = min{|H0(f)|}, f ∈ [m1,m2]

and m1,m2 correspond to the first and the last maxima of H0(f), with f ∈
[fp1, fp2]. The result can be seen in figure 1.
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Figure 1: Type I filter designed with linear programming. N = 100, w =
[10−3, 10−2, 10−3].
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1.2 Remez Algorithm

Afterwards we design the filter with Remez algorithm, leaving the parameters
and the weighting vector set as before. Using the same procedure we determine
the stop-band attenuation and the pass-band ripple, which result respectively
As = 33.9329dB and Rp = 0.57538dB.
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Figure 2: Filter designed with Remez Algorithm finds the optimal value for N =
256 but we use N = 100 (both even because type I), w = [10−3, 10−2, 10−3].

1.3 Linear Program - Type II

Finally we apply again linear programming but designing a type II band-pass
filter (We change N in order to be an odd number i.e. N = 101). We need to
change matrix V and vector x as:

V =



2T cos(2πf(N2 )T )

2T cos(2πf(N2 − 1)T )

2T cos(2πf(N2 − 2)T )

...

2T cos(πfT )



T

︸ ︷︷ ︸
k×N+1

2

x =



h0(0)

h0(T )

h0(2T )

...

h0((N−1
2 )T )



The result is very similar to the other ones, we can see a little (due to the
fact that N has increased a little) in the values of stop-band attenuation As =
34.7584dB and pass-band ripple Rp = 0.95529dB.
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Figure 3: Type II filter designed with linear programming. N = 101, w =
[10−3, 10−2, 10−3].

However, these three solutions are not able to completely remove the forest
sound keeping only the cuckoo’s in filtering the audio source.

1.4 Better solution using Remez Algorithm

Then we design with Remez a most suitable solution, setting N = NRemez+8 =
322 and the weighting vector to w = [10−4, 10−2, 10−4]. The resulting sound has
only the cuckoo sound. We obtain so as stop-band attenuation As = 77.1899dB
and pass-band ripple Rp = 0.23657dB.
This filter has very little ripple in the pass-band and a considerably low stop-
band.

1.5 Conclusions

The final exported audio signal is filtered by means of our final filter with
N = 322 and it is shown in figure 5. The sound is completely different from the
original. The noise is attenuated, the other birds’ sounds are almost nonexistent
and the cuckoo sound is clear (using a filter with ideal behaviour A = [0, 5, 0]
the cuckoo sound is also amplified).
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Figure 4: Better solution using Remez Algorithm, N = 322, w =
[10−4, 10−2, 10−4].

0 1 2 3 4 5 6 7 8

frequency [kHz]

-140

-120

-100

-80

-60

-40

-20

[d
B

]

Original audio source vs filtered with N = 100

Original

Filtered with N = 100

0 1 2 3 4 5 6 7 8

frequency [kHz]

-140

-120

-100

-80

-60

-40

-20

[d
B

]

Original audio source vs filtered with N = 322

Original

Filtered with N = 322

Figure 5: The audio source before and after the filtering

2 Exercise - Derivative Filter

For first we set the constants B = 3kHz, α = 0.05, and T = 1/Fp with
Fp = 8kHz, where α is the transition bandwidth in percentage.
The we proceed in designing the reference filter. We define fa = (1− α)B and
fb = (1 + α)B the cutoff frequencies.
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2.1 Filter design

HRef (f) is a derivative filter with approximate frequency response i2πf over the
active signal bandwidth B. So that we decide to build the reference behaviour
for a filter design with a linear program approach, considering the positive-
valued samples, as follows:

R(f) =

{
|i2πf |, 0 ≤ f ≤ fa
0, fb ≤ f ≤ Fp

2
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Figure 6: The reference form of the derivative filter, linear and logarithmic.

As the impulse response of a derivative filter h0(f) is odd, we must use a type
III or a type IV filter. We choose type III. We start with N = 100 to ensure
a good approximation of the ideal reference form. We thus set the weighting
vector w = 11.
As the filter we are designing is of type III,H0(f) has to be build asH0(f) = V ·x
where matrix V and vector x are built in the following way:

V =



2T sin(2πf N2 T )

2T sin(2πf(N2 − 1)T )

2T sin(2πf(N2 − 2)T )

...

2T sin(2πfT )



T

︸ ︷︷ ︸
k×N

2

x =



h0(0)

h0(T )

h0(2T )

...

h0((N2 − 1)T )
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The result can be seen in figures 7 and 8. It is possible to notice that the filter
obtained by linear programming retraces the reference one overlaying on it as
well.
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Figure 7: The result of type III linear programming filter design with N = 100
in time and frequency (linear).
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Figure 8: The result of type III linear programming filter design with N = 100,
w = 11.
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2.2 Test on a simple function

We can now test our filter on a simple function, like a well-known waveform.
For this aim we choose the function f(t) = sen(2πf0t) with f0 = 0.2Hz. Its
derivative is known in the closed-form as d

dtf(t) = 2πf0cos(2πf0t).
In figure 9 we can compare the original waveform, its well-known derivative
and the filtered waveform. The filtered signal differs from the ideal one only a
little in amplitude because of the oscillatory behaviour of the designed frequency
response.
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Figure 9: The original waveform, its well-known derivative and the filtered
waveform with N = 100.

2.3 Smallest value for N

In order to find the smallest value of N which guarantees a stop-band attenuation
As ≥ 40dB we perform the linear programming for progressively increasing
values of N (starting from N = 2 and considering only even values) until As
reaches the value of 40dB. Here we define As = 20log10(Hmax

δs
) with:

δs = max{|H0(f)|}, f ∈ [fb, Fp/2],

Hmax = max{|H0(f)|}, f ∈ [0, fa]

The value we find is N = 54. The filter can be seen in figure 10 and its test on
the waveform f(t) appears in figure 11.

2.4 Additional considerations

The obtained value for N can change according to the weighting vector cho-
sen for the procedure. We decided to set it to the simplest one (i.e. w = 11),
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Figure 10: The result of type III linear programming filter design with N = 54.
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Figure 11: The original waveform, its well-known derivative and the filtered
waveform with N = 54.

however we could have chosen it in many different ways.
For example with W (f) ∝ |f | the filter fits very well low frequencies also for
small values of N .
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3 Exercise - Peter and the wolf

Firstly we load the audio signal, which results very flat and rumbling, and set

the constants as: T1 = 75µs, T2 = 318µs, T3 = 3180µs, A = (T2−T1)
(T3−T1)

. We decide

to set N = 200 for the windowing part.

3.1 Windowing Technique

For first we proceed in filtering the audio signal by means of a windowing
technique. The chosen window is a simple rectangular window, because even
though we have tried also different window shapes (Hann, Hamming and Black-
man) we have noticed that the results are very similar one another.
Thus we build our filter only sampling the signal h(t) = A

T1
e−t/T 1 ·11(t)+

1−A
T3

e−t/T 3 ·11(t) over the interval [0, N ] with step T = 1/Fp where Fp is the
sampling frequency extracted from the audio source.

We also derive the analytical shape of the filter basing on the expression of

H(f) =
1

P (f)
= Re[H(f)] + i · Im[(H(f)]

where

P (f) =
(1 + 2iπfT1)(1 + 2iπfT3)

(1 + 2iπfT2)

So that we compare the frequency response of the ideal filter with the one
obtained from windowing. The result is shown in figure 12. It is possible to
notice that our filter overlays the ideal filter, therefore its coefficients guarantee
an appropriate approximation to the desired response. We can notice that it
fits better for low frequencies.
It can be shown very clearly in the plot of real and imaginary parts. The
real component of the windowed filter assumes higher amplitudes w.r.t. the
ideal one for high frequencies, but it is sufficiently compensated by the imagi-
nary component which assumes amplitudes lower than the ideal shape for high
frequencies (fig. 13).
Finally we filter the audio source with the obtained filter. The results seems
very natural, polished by artifacts of the original source.

3.2 Minmax procedure

We design now the filter extracting the real and the imaginary parts of H(f)
and using a minmax procedure which consists in computing them separately
with a linear program approach. This procedure is repeated for three dif-
ferent values of samples: with N = 50, N = 100 and N = 200.
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Figure 12: The resulting filter obtained with a rectangular window of N = 200
(201 samples) in time and frequency, compared to the ideal one.
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Figure 13: Real and imaginary parts of Windowed and ideal filters.

3.2.1 Real Part

For first we compute the real part which corresponds to a low-pass filter, taking
as a reference shape RR(f) = Re[H(f)] (i.e. the real part of the ideal filter).
Then build matrix V according to the requirements of Type I filters as in
Exercise 1.
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3.2.2 Imaginary Part

Then we compute the imaginary part which corresponds to an high-pass filter,
taking as a reference shape RI(f) = Im[H(f)] (i.e. the imaginary part of the
ideal filter). Then build matrix V according to the specifies of Type III filters
as in Exercise 2.

The weighting factor at frequency f is set to W (f) = |H(f)|, for both real
and imaginary parts, in such a way that a smaller error is enforced at higher
frequencies. In addition is important to consider the frequency range for the
evaluation of H(f) as [0, Fp − ε] where ε > 0 (Set here ε = 100� Fp) is neces-
sary to obtain the desired shape for the filter and have good fitting, especially
in the imaginary part.
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Figure 14: Real and imaginary parts of the filter obtained with minmax proce-
dure with N = 50 and the ideal filter.

Finally we rebuild the vector merging the real and imaginary parts as:

h(nT ) = hR(nT ) + hI(nT )

The final result can be shown in figures 17, 18 and 19. The better one is
clearly the one with N = 200, because it holds a behaviour less oscillating and
retraces better the ideal shape. We can also notice that the phase of the filter is
continuous with little bounces in correspondence with the local minima of the
absolute value of the filter.
The filtered audio source results improving the audio quality, but the output is
not as clear as the one obtained with windowing filter design.
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Figure 15: Real and imaginary parts of the filter obtained with minmax proce-
dure with N = 100 and the ideal filter.
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Figure 16: Real and imaginary parts of the filter obtained with minmax proce-
dure with N = 200 and the ideal filter.

3.3 Final comparison and Conclusions

Figures 20, 21 and 22 compare the ideal filter, the windowed filter and the one
obtained through minmax procedure for the three values of N (Rebuilding the
windowed filter according to the value of N to guarantee a comparison between
filters holding the same number of samples).
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Figure 17: Filter obtained from minmax procedure with N = 50
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Figure 18: Filter obtained from minmax procedure with N = 100

We can observe that a large number of samples, despite it increases the compu-
tational time, assures a better fitting.
Moreover, the windowed filter is more efficient than the other ones because it
holds a less oscillating behaviour and we can hear a cleaner resulting audio, even
though, as remarked before, the windowed filter frequency response assumes in-
creasing bigger amplitudes for high frequencies w.r.t. the ideal filter, while the
other one does not.
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Figure 19: Filter obtained from minmax procedure with N = 200

For these reasons the audio file exported is the one with N = 200 obtained
through the filter designed with windowing technique.
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Figure 20: Filters comparison with N = 50.
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Figure 21: Filters comparison with N = 100.
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Figure 22: Filters comparison with N = 200.

16


