
Homework 2 DSP

Elena Camuffo 1234370

10 December 2019 - 10 January 2020

1 Exercise - Vuvuzela

Listening to the input signal, we can notice that the audio is very noisy. The
voice is overhung by the vuvuzela sound, which is very disturbing. The objective
is to reduce as much as possible this annoying sound, which has its first harmonic
at about f0 = 235Hz.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2
original audio signal in time

0 1 2 3 4 5 6

frequency [kHz]

-140

-120

-100

-80

-60

-40

-20

[d
B

]

original audio signal in frequency

first 12 harmonics of f = 235Hz

Figure 1: Original audio source in time and frequency. We can see the peaks in
correspondence with the harmonics.

1.1 Filter design

As we have to kill one single frequency (and eventually its harmonics), we design
a Notch filter (fig. 2), a second order IIR filter (with M = N = 2).

1

0 0.05 0.1 0.15 0.2 0.25

/

0

0.2

0.4

0.6

0.8

1

|H
F
(f

)|

Notch filter killing f
0
 = 470Hz - Absolute value

0
=2 Tf

0
, r=0.99

0 0.05 0.1 0.15 0.2 0.25

/

-1

-0.5

0

0.5

1

H
F
(f

)/

Phase

0
=2 Tf

0
, r=0.99

Figure 2: Notch filter which kills the first harmonic of the vuvuzela sound
f0 = 235Hz.

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g
in

a
ry

 P
a
rt

Zeros and poles of Notch fiter at f
0
 = 235Hz

Figure 3: Zeros and poles of Notch filter which kills the first harmonic of the
vuvuzela sound f0 = 235Hz.

The filter is built in the following way:

HNotch(z) =
1− cos(θ0)z−1 + z−2

1− 2r · cos(θ0)z−1 + z−2
· 1− 2r · cos(θ0) + r2

2− 2 cos(θ0)︸ ︷︷ ︸
Normalizationfactor

2

Where θ0 = 2πf0T and r ≈ 1 (r = 0.99).

In figure 3 we can see that the locations of the poles pk = re±iθ0 and zeros
zk = e±iθ0 of the filter are symmetric w.r.t. the real axis.

Then we delete m = 12 harmonics, set at about integer multiples of f0, i.e.
fk = (k+ 1)f0, with k = 1, ...,m, in correspondence with the principal peaks of
the input sound of figure 1.

We simply repeat the procedure above m times, taking at iteration k as
input signal the output of iteration k − 1 as represented in figure 4.
Figure 5 shows the bunch of m different filters obtained, h1(·), ..., hm(·).

y0(nT)
h1(·)

y1(nT)
...

ym−1(nT)
hm(·)

ym(nT)

Figure 4: Scheme of Filtering.

0 1 2 3 4 5 6

frequency [kHz]

-50

-40

-30

-20

-10

0

10

m
a
g
n
it
u
d
e
 [
d
B

]

Filters frequency responses

first 12 harmonics of f = 235Hz

Figure 5: All the filters used.

The final audio ym(·) shows a consistent improvement w.r.t. the original source
(fig. 6). The vuvuzela sound is not completely suppressed, but perceptively
reduced.

3

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2
12 Notch cascade - filtered audio signal in time

0 1 2 3 4 5 6

frequency [kHz]

-140

-120

-100

-80

-60

-40

-20

[d
B

]

12 Notch cascade - filtered audio signal in frequency

original signal

filtered signal

Figure 6: The resulting audio filtered as in scheme of figure 4.

1.2 Additional Tentatives

In order to reach some improvements we try to kill all the harmonics. Firstly
following the iterative method used before (with Matlab’s Notch filter, keeping
the same value for the parameters) and then with a Notch comb.
The resulting audios from these methods (fig. 7) are much more polished and
the vuvuzelas are more attenuated.
The first seems to bring a real improvement, while in the second the voice is a
little distorted. Anyway we exported the audio obtained from the first procedure.

1.3 Conclusions

The deletion of a single frequency is not sufficient to clean the audio source from
the vuvuzela sounds. It is necessary to delete also a couple of other harmonics
to notice a significant improvement in the output.
In the filter design is important to select a value of r close enough to one to
avoid information loss.

4

0 1 2 3 4 5 6

frequency [kHz]

-140

-120

-100

-80

-60

-40

-20

[d
B

]

Notch cascade - filtered audio signal in frequency

original signal

filtered signal

0 1 2 3 4 5 6

frequency [kHz]

-140

-120

-100

-80

-60

-40

-20

[d
B

]

Notch comb - filtered audio signal in frequency

original signal

filtered signal

Figure 7: The resulting audio filtered with the notch cascade and the comb
notch.

2 Exercise - Peter and the wolf

The input audio signal results very flat and rumbling, like in exercise 3 of
homework 1. The considerations are the same, and the same is also the reference
behaviour of the equalizer, which corresponds to the analog filter with Laplace
transform:

Ha(s) =
(1 + sT2)

(1 + sT1)(1 + sT3)

Where T1 = 75µs, T2 = 318µs, T3 = 3180µs.

2.1 Transform method

To filter the signal we use the Transform Method to design an IIR filter (M =
N = 2) starting from Ha(s).
The purpose is to map the continuous-time analog filter to the discrete-time
domain by means of a bilinear transform i.e. operating substitution s =
k · z−1z+1 . Therefore the expression obtained is the following:

Hd(z) = Ha(s)|s=k· z−1
z+1

=

=
(1 + kT2)z2 + 2z + (1− kT2)

(1 + kT3 + kT1 + T1T3k2)z2 + (2− 2k2T1T3)z + (1− kT3 − kT1 + k2T1T3)

As the axis in the s-plane are mapped to the unit circle in the z-plane, the
following relation holds:

5

z = ei2πfT −→ s = k · e
i2πfT − 1

ei2πfT + 1
= k · i tan(πfT)

Since for small values of f , tan(πfT) ≈ πfT and in the analog domain s = i2πf ,
it follows that:

i2πf ≈ k · iπfT
Consequently the scaling factor results k = 2

T and we get:

Hd(z) = Ha(s)|s=k· z−1
z+1

= Ha

(2

T
· z − 1

z + 1

)
This bilinear transformation is also known as Tustin’s method.

As shown in figure 8, the obtained filter matches the reference behaviour for low
frequencies, while for high frequencies it decreases more rapidly.
The BIBO stability of Hd(z) is confirmed by zeros and poles inside the unit
circle (fig. 9). In the filtered audio we can notice an improvement w.r.t the
original.

0 0.5 1 1.5 2

frequency [Hz] 10
4

-60

-40

-20

0

[d
B

]

Digital Filters obtained with Transform Method - absolute values

Analog filter shape

Digital filter shape

Digital ANALITIC filter shape

0 0.5 1 1.5 2

frequency [Hz] 10
4

-1.5

-1

-0.5

0
Digital Filters obtained with Transform Method - phases

Analog filter shape

Digital filter shape

Digital ANALITIC filter shape

Figure 8: Filter obtained with the Transform method. The red one via the
Tustin’s trasformation provided by Matlab, the yellow one manually operating
the substitution.

2.2 Optimization method

Then we design the filter with a direct optimization method based on a linear
programming approach trying to obtain a match with the absolute value of
the analog filter, i.e. D(f) = |Ha(i2πf)|.

6

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g
in

a
ry

 P
a
rt

Zeros and poles extracted with transform method

Figure 9: Zeros and poles of the filter obtained with the Transform method.

As a weighting vector we set W (f) = 1
D(f) in order to enforce a smaller error

at low frequencies.
We consider the frequency range [0, FP − ε] for the evaluation, where ε > 0 (Set
here ε = 100� FP), with sampling step F = FP

103 = 44.1Hz.

The obtained zeros and poles from the procedure (fig. 10) are the ones of the

self reciprocal polynomial D(f)2 =
∣∣P (z)2

Q(z)2

∣∣ =
∣∣P (z)P̂ (z)

Q(z)Q̂(z)

∣∣ where P̂ (z) and Q̂(z)

are the mirror image polynomials of P (z) and Q(z).

0

30

60

90

120

150

180

210

240

270

300

330

0

2

4

6

unit circle

poles

zeros

stable poles

stable zeros

Figure 10: All zeros and poles of the self reciprocal polynomial.

7

Then reducing zeros and poles to the stable ones (fig. 11) we get the minimum
phase filter of figure 12.

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g
in

a
ry

 P
a
rt

Stable zeros and poles extracted with optimization method

Figure 11: Stable zeros and poles of the filter obtained with optimization
method.

0 0.5 1 1.5 2

frequency [Hz] 10
4

-60

-40

-20

0

[d
B

]

Digital Filter obtained with Optimization Method - absolute value

Analog filter shape

Digital filter shape

0 0.5 1 1.5 2

frequency [Hz] 10
4

-1.5

-1

-0.5

0
Digital Filter obtained with Optimization Method - phase

Analog filter shape

Digital filter shape

Figure 12: Filter obtained with optimization method.

We can notice that this filter shape matches even better the original shape than
the previous, in terms of absolute value, while the match is not so good as
regards the phase.

8

2.3 Conclusions

The filter designed with the transform method reshapes well the analog filter
and it requires only 4 coefficients w.r.t. the 200 of the filter designed in exercise
3 of homework 1.
However, for high frequencies it decreases more rapidly than the analog. This
is because the approximation tan(πfT) ≈ πfT holds only for low frequencies.

As regards the direct optimization method, it also approximates well the
analog filter shape. Compared to the one obtained with the transform method,
it gives a better approximation of the absolute value and a worse one of the
phase, as its zeros locations are different.
This method requires a good choice of the initial conditions to have a good
approximation of the desired filter shape, but achieves better results for high
frequencies.

The output audios are very similar each other, and we can’t hear any improve-
ment brought by the second one. For this reason we exported the one obtained
with the first procedure.

0 0.5 1 1.5 2

frequency [Hz] 10
4

-60

-40

-20

0

[d
B

]

Filter comparison - absolute value

Analog filter

Digital filter with transform

Digital filter with optimization

0 0.5 1 1.5 2

frequency [Hz] 10
4

-1.5

-1

-0.5

0
Filter comparison - phase

Analog filter

Digital filter with transform

Digital filter with optimization

Figure 13: Comparison between the two filters.

9

3 Exercise - Buongiorno

The loaded audio source is a stereo sound (it is subdivided into 2 channels).
We need to convert it from rate FP = 44.1kHz to F ′P = 48kHz. To reduce the
computational time required, we take for our analysis only a portion (1/4) of
the entire soundtrack.

0 5 10 15 20 25 30 35 40

frequency [kHz]

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

[d
B

]

ORIGINAL audio signal in frequency at 44.1kHz

channel 1

channel 2

Figure 14: Original audio signal.

3.1 Rate Conversion Algorithm

To operate the conversion we relied on the rate conversion algorithm, which is
represented in figure 15 and is composed of the following steps:

• For first up-sample the input signal x(nT), with sampling frequency FP
and sampling period T = 1/FP , adding L-1 zeros between original samples
and multiplying by L. The output signal has sampling period F ′′P = L·FP .

• Then filter it with a low pass filter with cutoff frequency f0 = min{FP

2 ,
F ′P
2 }.

This filter is a composition of two filters: a filter to preserve only the in-
formation of the input signal and a filter to avoid aliasing.

• Finally down-sample the result, taking one over M samples and obtain-

ing this way a final output signal of sampling period F ′P =
F ′′P
M = FP · LM .

3.1.1 Interpolation

The interpolation step is here simply realized by inserting L − 1 = 159 zeros
between samples of the original signal and multiplying it by L. The result is

10

x(nT)
xL h(·)

yM y(nT)
FP F ′′P F ′′P F ′P

Figure 15: Scheme of multirate system used. L = 25 ·5 = 160, M = 72 ·3 = 147.
FP = 44.1kHz, F ′′P = L · FP , F ′P = L

M · FP = 48kHz.

the signal in figure 16 with sampling frequency F ′′P = 160 · FP = 7056kHz.

0 1000 2000 3000 4000 5000 6000 7000

frequency [kHz]

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

[d
B

]

INTERPOLATED audio signal in frequency at 7056kHz

channel 1

channel 2

Figure 16: Interpolated audio signal by a factor L = 25 · 5 = 160.

3.1.2 Filtering

The filtering operation was made designing a suitable filter with cutoff frequency
f0 = FP /2 and order N = 11954, estimated relying on firpmord function.

The filter is designed via a windowing technique (fig. 17) technique be-
cause, even if a filter designed with Remez would provide better performances
in terms of pass-band ripple and stop-band attenuation, it cannot guarantee to
satisfy the correct interpolation property and requires more computational time.

The result of the filtering step is shown in figure 18.

3.1.3 Decimation

The final step is decimation, simply realized taking one sample over M = 147.
The final result at frequency F ′P = 48kHz is really similar to the original audio,

11

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

time [s] 10
-3

-2

0

2

4

10
4 WINDOWED filter time domain, N = 11954

0 1 2 3

frequency [Hz] 10
4

-150

-100

-50

0

50

[d
B

]

frequency domain - abolute value

f
0
 = 22.05kHz

1 2 3

frequency [Hz] 10
4

-8000

-6000

-4000

-2000

0

p
h
a
s
e

frequency domain - phase

f
0
 = 22.05kHz

Figure 17: Filter designed with a windowing technique. Cutoff frequency is
f0 = FP /2 = 22.05kHz.

0 1000 2000 3000 4000 5000 6000 7000

frequency [kHz]

-250

-200

-150

-100

-50

0

50

100

150

[d
B

]

FILTERED audio signal in frequency

channel 1

channel 2

Figure 18: Filtered audio signal with a windowing technique.

and it is shown in figure 19.

12

0 5 10 15 20 25 30 35 40 45

frequency [kHz]

-180

-160

-140

-120

-100

-80

-60

-40

-20

[d
B

]

Resulting audio signal DOWNSAMPLED in frequency at 48kHz

channel 1

channel 2

Figure 19: Final audio, decimated by a factor M = 72 · 3 = 147.

First Stage
x(nT) x4 ha(·)

y3
ya(nT)

T Ta

Second Stage
ya(nT) x8 hb(·)

y7
yb(nT)

Ta Tb

Third Stage
yb(nT) x5 hc(·)

y7
yc(nT)

Tb Tc

Figure 20: Scheme of multistage rate conversion. T = 44.1kHz = 1/FP , Ta =
3
4T , Tb = 7

8Ta, Tc = 7
5Tb = T ′ = 48kHz. The cutoff frequecies of the three

filters are respectively fa = FP /2, fb = Fa/2 where Fa = 1/Ta and fc = F ′P /2.

3.2 Multistage Approach

Then we realize the same rate conversion, but using a multistage approach. Also
here we follow the rate conversion algorithm explained before and we iteratively
apply it to the audio source, in such a way that the output of the first iteration
is the input of the second and the output of the second is the input of the third,
as shown in scheme of figure 20.

The three filters have respectively orders Na = 299, Nb = 598 and Nc = 523,
estimated relying on firpmord function.
The first 2 filters have cutoff frequencies respectively fa = FP /2 = 22.05kHz,

13

fb = Fa/2 = 29.4kHz, like in the overall conversion.
On the other hand, the third one has L < M . So its cutoff frequency must be
fc = F ′P /2 = Fc/2 = 24kHz and not Fb/2, in order to avoid aliasing in the
decimation stage.

3.3 Conclusions

The multistage approach results the better solution both in terms of filters com-
plexity and computational time required:
The three filters built for the multistage hold a really little number of samples
(order of 102) compared to the filter of the single stage approach (order of 104)
to reach more or less the same quality in the output sound.
The single stage approach is also more computationally demanding, especially
for long input audios.

For these reasons the exported audio file is the one obtained with the multistage
approach.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

time [s] 10
-3

-2

0

2

4
10

4 filter A time domain, N = 299

0 1 2 3

frequency [Hz] 10
4

-150

-100

-50

0

50

[d
B

]

frequency domain - absolute value

f
a
 = 22.05kHz

1 2 3

frequency [Hz] 10
4

-8000

-6000

-4000

-2000

0

p
h
a
s
e

frequency domain - phase

f
a
 = 22.05kHz

Figure 21: Filter used for rate conversion with L = 4, M = 3.

14

-8 -6 -4 -2 0 2 4 6 8

time [s] 10
-4

-2

0

2

4

6
10

4 filter B time domain, N = 598

0 1 2 3 4

frequency [Hz] 10
4

-150

-100

-50

0

50

[d
B

]

frequency domain - absolute value

f
b
 = 29.4kHz

1 2 3

frequency [Hz] 10
4

-8000

-6000

-4000

-2000

0

p
h
a
s
e

frequency domain - phase

f
b
 = 29.4kHz

Figure 22: Filter used for rate conversion with L = 8, M = 7.

-8 -6 -4 -2 0 2 4 6 8

time [s] 10
-4

-2

0

2

4

6
10

4 filter C time domain, N = 523

0 1 2 3

frequency [Hz] 10
4

-150

-100

-50

0

50

[d
B

]

frequency domain - absolute value

f
c
 = 24kHz

1 2 3

frequency [Hz] 10
4

-8000

-6000

-4000

-2000

0

p
h
a
s
e

frequency domain - phase

f
c
 = 24kHz

Figure 23: Filter used for rate conversion with L = 5, M = 7.

15

0 5 10 15 20 25 30 35 40 45

frequency [kHz]

-180

-160

-140

-120

-100

-80

-60

-40

-20

[d
B

]

Resulting audio signal MULTISTAGE in frequency at 48kHz

channel 1

channel 2

Figure 24: Filtered audio signal with a multistage approach.

16

