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"Simplicity is the end result of long, hard work, not the starting point."

- Frederick Maitland -

"I am enough of an artist to draw freely upon my imagination. Imagination is more important than knowledge.
Knowledge is limited. Imagination encircles the world."

- Albert Einstein -





Abstract

Recent advances in technologies such as autonomous driving and robotics have high-
lighted the growing need for precise environmental perception. LiDAR Semantic Seg-
mentation has recently attracted the attention of industrial and academic research due to
its ability to accomplish fine-grained scene understanding and act directly on raw content
provided by sensors. The task has been approached in a variety of ways, so far. RandLA-
Net architecture has been selected for this work as it represents a powerful and lightweight
solution to deal with large-scale data. The goal of developing solutions that aim at opti-
mizing the learning process rather than focusing on the architecture has been considered,
showing how different learning techniques can be used to improve the performance of the
model. The methods include Curriculum Learning and Contrastive Learning, which aim
at having a better separation between different classes, providing a better understanding
of the scene content. Coarse-to-Fine strategies have been developed as well as regulariza-
tion methods in order to take into account a hierarchical organization of the classes. The
results we obtained outperform the state of the art, achieving an improvement of 1.5% in
terms of mIoU with different methods. They proved their efficiency by providing a better
balance of classes and a faster convergence to optimal performance.





Sommario

Lo sviluppo recente di tecnologie come la guida autonoma e la robotica hanno evidenzi-
ato la crescente necessità di una più accurata percezione dell’ambiente da parte dei dis-
positivi. La segmentazione semantica LiDAR ha recentemente attirato l’attenzione della
ricerca industriale e accademica, grazie alla sua capacità di comprendere in modo preciso
il contenuto della scena percepita e agire direttamente sui dati grezzi forniti dai sensori. A
tale scopo sono state proposte diverse soluzioni algoritmiche. RandLA-Net è stata scelta
come architettura per questo lavoro, in quanto rappresenta una soluzione potente e leg-
gera per gestire dati su larga scala. L’obiettivo della tesi è sviluppare una procedura per
ottimizzare il processo di apprendimento di RandLA-Net invece di andare a modificare la
struttura della rete, mostrando come diverse tecniche di apprendimento possano miglio-
rare le prestazioni a parità di modello, dataset e risorse di calcolo. I metodi includono
l’apprendimento curriculare (Curriculum Learning) e l’apprendimento contrastivo (Con-
strastive Learning), i quali mirano ad ottenere una migliore separazione tra le diverse
classi, basandosi su un raggruppamento gerarchico a posteriori e fornendo una migliore
comprensione del contenuto della scena. Strategie Coarse-to-Fine e metodi di regolariz-
zazione sono stati impiegati per tenere conto di un’organizzazione gerarchica delle classi. I
risultati dei nostri metodi superano lo stato dell’arte, ottenendo un miglioramento di 1.5%
in termini di mIoU con diversi metodi. Hanno dimostrato la loro efficienza, fornendo un
migliore equilibrio delle classi e una convergenza più rapida verso le prestazioni ottimali.
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1Introduction

In this chapter a brief overview of the problem and the contribution of our work is given.
∗ ∗ ∗

Recent advances in technologies such as autonomous driving and robotics have high-
lighted the growing necessity for precise environmental perception. Moreover, the
widespread use of such technologies as well as the rapid rate of development have
pointed out the need for fast and precise solutions that can accommodate even scenarios
in which the safety of people and living entities must be taken into account.
In parallel, the quick evolution of deep learning technologies and the increasing power of
Graphic Processing Units (GPUs), raised thanks to the spread of graphics and rendering
solutions, have given birth to a solid framework for research and has enabled us to deal
even with burdensome Computer Vision (CV) tasks in a straightforward way.

Several computer vision tasks providing semantic scene understanding are used in
robotics and autonomous driving applications (Figure 1.1). Specifically, Point Cloud Se-
mantic Segmentation (PCSS) task has recently attracted the attention of industrial and aca-
demic research due to its ability to accomplish fine-grained scene understanding and act
directly on the raw content provided by sensors; in fact, the most common data employed
are point clouds generated through LiDAR sensors.
However, when dealing with this kind of data, there are several difficulties that must
be addressed. For example, point clouds are often sparse data structures, in contrast to
images where pixels are regularly distributed. This peculiarity makes point cloud process-
ing quite challenging because of high redundancy, uneven sampling density, and lack of
explicit structure. Moreover, the utilization of LiDAR-generated point clouds has revealed
other quality-degrading problems, such as occlusions, lighting, and weather conditions.

Also problems related to datasets size and compositions represent a limitation in point
cloud processing. In fact, LiDAR datasets sizes highly affect the performance of deep
learning models jointly with the heterogeneity and classes balancement in their scenes.
Moreover, due to the difficulties in acquiring and labeling three-dimensional data, the
number of LiDAR datasets now accessible is significantly lower than that of image
datasets. In this context, SemanticKITTI dataset has been chosen for this work, providing
large-scale data with a sufficient amount of diversity in its scenes.



1. INTRODUCTION

The task of LiDAR semantic segmentation has been approached in a variety of ways so
far. Unsupervised algorithms that simply grouped points into regions according to spatial
criteria were among the earliest techniques proposed. Later, supervised approaches, such
as conventional machine learning and Deep Learning (DL) techniques, were introduced.

Among the currently employed techniques are methods that simplify the task by project-
ing point clouds onto bidimensional images. Other largely adopted techniques involve the
discretization of point clouds using three-dimensional volumetric structures, like voxels
or octrees, that resemble the image structures in a three-dimensional environment. How-
ever, both these methods imply the discretization of the data, which introduces undesired
artifacts and causes an information loss. These issues represent relevant problems for ap-
plications where a considerable level of precision is required, for example in self-driving
cars, where people’s safety needs to be ensured. Therefore, a class of methods that act di-
rectly on the raw point clouds have been chosen for this work. In particular, RandLA-Net
[15] architecture has been selected, as it represents a powerful and lightweight solution to
deal with large-scale data.

The challenging task of optimizing point cloud processing is still an open problem, since
algorithms are extremely computationally heavy, and data require large memory space.
LiDAR semantic segmentation has been enabled only during the last few years thanks to
the optimization in the GPUs computational capabilities; nevertheless, it is still in its early
stages, and further developments need to be studied to improve its applicability.

Most of the existing approaches improved the performances of LiDAR semantic segmenta-
tion by enhancing the deep learning architecture. However, this would need a significant
investment of resources, which could not be feasible in most scenarios. The objective of
this work is to develop solutions that aim at optimizing the learning process, rather than
focusing on the architecture.

(a) Robotics. (b) Self-driving cars. (c) Remote sensing.

Figure 1.1: Examples of application of semantic scene understanding methods.
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1.1 PROPOSED CONTRIBUTION

Several learning techniques will be considered in this research work to improve LiDAR
semantic segmentation performance. Some initial analyses have been led on the dataset,
highlighting some interesting insights related to the dataset itself and the dataset related
with the model outcome. According to these analyses, the strategies to be adopted later
have chosen.

Among them, Curriculum Learning techniques are explored. This approach consists in
emulating the natural human learning process presenting first the easiest examples and
refining the knowledge on more difficult ones at the advanced stages. This way the model
is carried to gradually learn the content of the data in a natural manner.
Moreover, also Contrastive Learning methods have been used. This latter approach con-
cerns techniques that aim at having a better separation among different classes, providing
a better understanding on the scene content.

In this work novel contributions exploiting these learning strategies are presented. We
show that our approaches outperform the state of the art both in terms of overall perfor-
mance and convergence time.
Particulary, all the methods are founded on the idea of a hierarchy that sees semantic
classes grouped depending on their category: people are separated from road as well
as from vehicles and vegetation, in order to provide first a broad labelling and then a
refinement, because a totally wrong misclassification, like confusing a traffic-sign with a
person is more dangerous than confusing a car with a truck. The developed approaches
include Coarse-to-Fine (C2F) strategies and training regularization methods.

The thesis is organized in the following way. In Chapter 2 an overview of the theoreti-
cal background concerning semantic scene understanding and semantic segmentation is
provided. A detailed explanation of the metrics and components of the task is given, to
move finally the attention on the specific task of LiDAR semantic segmentation. Chap-
ter 3 describes the structures used to deal with three-dimesional data, introducing also
the LiDAR datasets and the problematics related. Chapter 4 provides the analyses led on
SemanticKITTI dataset [2] for our work while Chapter 5 introduces all the stategies em-
ployed. Finally results are given in Chapter 6 and conclusions are drawn in Chapter 7.
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2Semantic Scene Understanding

In this chapter an overview of the methods and the state of the art approaches for semantic scene
understanding is presented. LiDAR semantic segmentation and the main architectures employed
are introduced. Particular attention is given to the architecture used in this work.

∗ ∗ ∗

Semantic scene understanding is an essential task for many computer vision applications.
The main aim is to identify and classify each element of an acquired scene within a general
framework, i.e., analyze objects in context with respect to the three-dimensional structure
of the scene, its layout, and the spatial, functional, and semantic relationships between
objects. Among its major applications are autonomous driving systems, where perceiving
the overall content of the environmental scene is essential for decision making and safety
control [19].

The task includes several computer vision disciplines that provide scene understanding
at different levels of resolution with different purposes. Particularly, fine-grained road
scene understanding provided by semantic segmentation (Section 2.1.3) is necessary to
distinguish drivable and non-drivable surfaces and to infer its functional properties, like
parking areas and sidewalks. Currently, such understanding is primarily generated in
advance using surveying vehicles and represented in so-called high resolution maps [2].

2.1 DISAMBIGUATION

Various levels of scene understanding can be achieved using different computer vision
approaches. The choice mainly depends on the application, the scale, the level of detail
and properties of objects. Most of the architectures (e.g., PointNet [30] for LiDAR semantic
segmentation, Section 2.3.3) provide solutions to more than one of these tasks at the same
time. The main categories are overviewed in the following sections.

2.1.1 Image Classification

The most general and simple task for computer vision is image classification, which has
found wide diffusion thanks to its applicability in various fields. The task consists in
determining the content of an image (or point cloud in the case of three-dimensional data)
and categorizing it with a single label (Figure 2.1b).
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Figure 2.1: Computer vision tasks in bidimensional space.

Formally, the classification problem can be defined as follows. Given an image, i.e., a set of
pixels, X = {x1,x2,xi , . . . ,xN }with xi ∈ R2 and a candidate label set Y = {y1, y2, . . . , yk} assign
the whole point set X to only one of the k labels. The same definition can be applied in a
three-dimensional context, where instead of an image composed of pixels we have a point
cloud, i.e., a set of ordered three-dimensional points where xi ∈ R3.

On the other hand, effective classification requires the image to be uniform in content and
contain a single object to be classified. If a more accurate understanding of the scene is
required, some other computer vision techniques need to be applied. For example, clas-
sification can be done jointly with localization (Figure 2.1c). This technique is widely em-
ployed in face recognition systems, where a precise analysis can be led if the person’s face
is localized in advance (e.g., by means of algorithms such as Viola and Jones [42]).

2.1.2 Object Detection

When we want to classify more than one element in a scene, we need to employ object
detection techniques. In particular, object detection is an extension of classification and
localization task, i.e., it localizes all the objects in the scene, encapsulating each into a
bounding box (Figure 2.1d). Therefore, it provides their geometric location and orienta-
tion in addition to their semantic instance label.

Each box is commonly represented as (x,y,h,w,θ,c). The parameters (x,y) denotes the
object (bounding box) center position, (h,w) represents the bounding box size with width
and height, and θ is the object orientation. Finally, c represents the semantic label of this
bounding box (object).

Object detection is a fundamental task that allows to have a more precise understanding
of the scene and all the objects within it. However, the encapsulation of objects in their
bounding boxes represents a limitation, as they contain also part of the background and
several bounding boxes can overlap if the respective objects are close one another. If a more
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precise shape of the objects is required, segmentation techniques have to be employed.

2.1.3 Semantic Segmentation

The task of semantic segmentation is a fundamental research challenge in image process-
ing. It is one of the finest approaches towards semantic scene understanding as it provides
a classification at the pixel level, i.e., each pixel in the image is associated to an object,
identified by a semantic label (Figure 2.1a).

Formally, semantic segmentation is the process to cluster the input data into several
homogeneous regions, where points in the same region have some identical attributes.
Each input point is predicted with a semantic label, i.e., given a set of N ordered pixels
X = {x1x2, . . . ,xN }, xi ∈ R2 and a candidate label set Y = {y1, y2, . . . , yk}, assign each input
point to one of the k semantic labels.

Semantic segmentation provides a labelling that is equal for whatever object is in the scene.
For example, if there are two cats like in Figure 2.1d, semantic segmentation provides that
the pixels associated with the two cats have the same label (i.e., cat) and belong to the
same category. Conversely, another computer vision task, named instance segmentation,
provides a label for each instance of each class within a scene (Figure 2.1e).

As for image classification and object detection, semantic segmentation can be extended
to a third depth-related information, taking into consideration three-dimensional points
instead of pixels.
Moreover, when dealing with objects in a three-dimensional environment (e.g., represent-
ing people) semantic segmentation can be applied to a single object with the task of part
segmentation [20]. Part segmentation produces pixel-level semantic annotations that indi-
cate fine-grained object parts instead of an overall object label.

2.2 SEMANTIC SEGMENTATION

In this work, we perform semantic segmentation applied to three-dimensional data in an
autonomous vehicles’ scenario. This section provides an overview of the task, firstly ap-
plied to images and later to three-dimensional data.

2.2.1 Image Semantic Segmentation

As anticipated, image semantic segmentation provides pixel-wise labelling, often referred
to as dense prediction. The goal is to take either a RGB color image (h×w×3) or a grayscale
image (h ×w × 1) and output a segmentation map where each pixel contains a class label
represented as an integer (h×w× 1).
The target is produced by one-hot encoding the class labels and the prediction can be
collapsed into a segmentation map (Figure 2.2c) by taking the argmax of each channel-wise
pixel vector (Figure 2.2b) [27] [11].
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(a) Semantic segmentation task representation.

(b) Semantic segmentation mask for each class. (c) Semantic segmentation pixel labelling.

Figure 2.2: Semantic segmentation process.

2.2.1.1 Architecture

The task can be tackled both with classic computer vision algorithms and deep learning
architectures, which are usually preferred for their efficiency.
A typical architecture to accomplish the task is composed simply stacking convolutional
layers and producing a final segmentation map. This model directly learns a mapping
from the input image to its corresponding segmentation through the successive transfor-
mation of feature mappings. However, it is quite computationally expensive to preserve
the full resolution throughout the network. In fact, earlier layers tend to learn low-level
concepts while later layers develop more high-level specialized feature mappings. In
order to maintain useful information, the number of feature maps needs to be increased
getting deeper in the network.

A popular approach that permits image segmentation models to keep the full image reso-
lution is to follow an encoder/decoder structure (Figure 2.9) where a lower-resolution feature
map is developed through successively downsampling of the input image and then up-
sampled to obtain a full-resolution segmentation map.
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Figure 2.3: Semantic segmentation encoder/decoder structure [23].

2.2.1.2 Fully Convolutional Network

Long et al. [23] developed in late 2014 the concept of utilizing a fully convolutional
network (FCN) trained end-to-end, pixel-to-pixel for image segmentation. The authors
propose popular image classification networks (e.g., AlexNet [18]) to serve as the net-
work’s encoder module, with a decoder module containing transposed convolutional
layers to upsample the coarse feature maps into a full-resolution segmentation map. A
pixel-wise cross entropy loss (Section 2.2.3) is used to train the entire network.

However, because the encoder module reduces the resolution of the input, the decoder
module struggles to produce fine-grained segmentations.

Semantic segmentation faces an inherent tension between semantics and location:
global information resolves "what" while local information resolves "where". Com-
bining fine layers and coarse layers lets the model make local predictions that respect
global structure [34].

This conflict is solved by gradually upsampling the encoded representation in stages,
adding skip connections from prior layers, and summing the two feature maps. Skip con-
nections should provide the necessary details in order to reconstruct accurate shapes for
segmentation boundaries and allow us to recover more fine-grain details.

Ronneberger et al. improved the fully convolutional architecture by expanding the capac-
ity of the decoder module of the network. They propose the U-Net architecture (Figure
2.4), which consists of a contracting path to capture context and a symmetric expanding
path that enables precise localization [34]. This simple architecture has grown to be very
popular and has been adapted for a variety of segmentation problems. A similar structure
can be found even in models for LiDAR semantic segmentation (Section 2.3).

On the basis of U-Net, many other models have been proposed. For example, convolu-
tion blocks have been replaced with residual blocks [7], introducing short skip connections

27



2. SEMANTIC SCENE UNDERSTANDING

Figure 2.4: U-Net architecture.

(within the block) alongside the existing long skip connections of U-Net. This allows for
faster convergence when training and deeper models to be trained.

2.2.1.3 Datasets

A number of common datasets for semantic segmentation has been created in order to help
researchers to train new models and benchmark against the state of the art. For indoor en-
vironments, PASCAL VOC [8], published in 2012 for a competition, contains 20 object
categories and more than 3000 images for training, validation and private testing sets. In
2018 COCO [22] was published, holding 163K images with 91 classes. For the outdoors
environment, Cityscapes [6] is worth mentioning, since it is a dataset for autonomous driv-
ing, whose classes resembles the ones of SemanticKITTI (Section 3.2.3).

2.2.2 Metrics

When evaluating a standard machine learning model, predictions are usually classified
into four categories1: true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). However, for the dense prediction task of image segmentation, it is
not immediately clear how to evaluate the generated map. In this section the metrics used
specifically for this task are overviewed [27] [11].

1A true positive is observed when a prediction-target mask pair has an IoU score (Section 2.2.2.3) which
exceeds some predefined threshold.
A false positive indicates a predicted object mask had no associated ground truth object mask.
A false negative indicates a ground truth object mask had no associated predicted object mask.
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Figure 2.5: Precision, Recall, IoU and Dice coefficient metrics.

2.2.2.1 Execution time and memory footprint

Speed or runtime is an extremely valuable metric since the vast majority of systems must
meet hard requirements on how much time in performing inference.
Memory usage is another limiting factor for segmentation methods, even if it is less con-
straining than execution time.

2.2.2.2 Pixel accuracy

The main metric, used also for classification and other computer vision tasks (Section 2.1)
is the accuracy. In particular for segmentation we referred to it as pixel accuracy.

Pixel accuracy simply reports the percent of pixels in the image which were correctly clas-
sified. For K + 1 classes (typically, K foreground classes and the background) it is defined
as:

PA =
∑K

i=0 pii∑K
i=0

∑K
i=0 pij

=
TP +TN

TP +TN +FP +FN
(2.1)

where pij is the number of pixels of class i predictied as belonging to class j .

When considering the per-class pixel accuracy we are essentially evaluating a binary
mask; a true positive represents a pixel that is correctly predicted to belong to the given
class (according to the target mask) whereas a true negative represents a pixel that is
correctly identified as not belonging to the given class. This metric can sometimes provide
misleading results when the class representation is small within the image.

Mean Pixel Accuracy (MPA) is a slightly improved PA in which the ratio of correct pixels
is computed in a per-class basis and then averaged over the total number of classes.
Other metrics used also for other tasks are useful in semantic segmentation are precision
and recall.

Precision effectively describes the purity of positive detections relative to the ground truth,
i.e., of all of the objects that we predicted in a given image, how many of those objects
actually had a matching ground truth annotation.

Precision =
TP

TP +FP
(2.2)
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Recall effectively describes the completeness of positive predictions relative to the ground
truth, i.e., of all of the objected annotated in our ground truth, how many were captured
as positive predictions.

Recall =
TP

TP +FN
(2.3)

Usually we are interested into a combined version of precision and recall rates, the F1 score
metric, which is defined as the harmonic mean of precision and recall:

F1 =
2 ·Precision ·Recall
Precision+Recall

(2.4)

Dice coefficient is another popular metric for segmentation, which can be defined as twice
the overlap area of predicted and groundtruth maps, divided by the total number of pixels
in both images.

Dice =
2 · |A∩B|
|A|+ |B|

(2.5)

When applied to boolean data the Dice coefficient is essentially identical to the F1 score
(Equation 2.4).

2.2.2.3 Intersection over Union

The Intersection over Union (IoU) metric, also referred to as the Jaccard index, is one of
the most commonly used metrics in semantic segmentation. It is defined as the area of
intersection between the predicted segmentation map and the ground truth, divided by
the area of union between the predicted segmentation map and the ground truth:

IoU = J(A,B) =
|A∩B|
|A∪B|

(2.6)

where A and B denote the ground truth and the predicted segmentation maps, respec-
tively. It ranges between 0 and 1.

This metric is closely related to the Dice coefficient (Equation 5.2) which is often used as
a loss function during training (Section 2.2.3). Quite simply, the IoU metric measures the
number of pixels common between the target and prediction masks divided by the total
number of pixels present across both masks.

Mean-IoU (mIoU) is another popular metric, which is defined as the average IoU over
all classes. It is widely used in reporting the performance of modern segmentation algo-
rithms:

mIoU =
1

K +1

K∑
i=0

pii∑K
j=0 pij +

∑K
j=0 pjipii

(2.7)

This metric will be widely employed later in this thesis (Chapter 6), in order to evaluate
the performances of our methods.
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Frequency weighted intersection over union is an improved mIoU which weights each
class importance depending on their appearance frequency:

FWIoU =
1∑K

i=0
∑K

j=0 pij

K∑
i=0

∑K
j=0 pijpii∑K

j=0 pij +
∑K

j=0 pjipii
(2.8)

2.2.3 Loss functions

Machine learning and mathematical optimization problems are characterized by a loss
function (or cost function), which is a function that maps an event or values of one or
more variables onto a real number intuitively representing some "cost" associated with the
event. An optimization problem seeks to minimize a loss function.
The most common loss function for the task of image segmentation is a pixel-wise cross-
entropy loss (Figure 2.6a). This loss examines each pixel individually, comparing the class
predictions to the one-hot encoded target labels and then averages over all pixels in the
image:

LCE = −
∑

classes

ypred · logypred (2.9)

This way the cross entropy loss ensures equal learning for each pixel. This can be a prob-
lem if dealing the pixels for each class in the image are unbalanced since training can be
dominated by the most prevalent class. To fill this gap, many weighting schemes have
been proposed, in order to provide balancement among all the classes.

Another popular loss function is known as the soft Dice loss (Figure 2.6b) and based on
the Dice coefficient (Equation 5.2). In order to formulate a loss function which can be
minimized, we’ll simply use:

LDice = 1−Dice (2.10)

This loss directly uses the predicted probabilities instead of thresholding and converting
them into a binary mask.

2.2.4 Three-dimensional Semantic Segmentation

Point cloud semantic segmentation is the three-dimensional form of semantic segmenta-
tion, in which regularly or irregularly distributed points in three-dimensional space are
used instead of regularly distributed pixels.

Even if point clouds and generally three-dimensional data (dealt in detail in Chapter 3)
present many differences with respect to images, the procedures and architetures adopted
in 3D semantic segmentation have a very similar behaviour. The main methods are dealt
in detail in the following section. Also, the metrics and loss functions are more or less the
same of those used in image semantic segmentation (Sections 2.2.2, 2.2.3).

3D semantic segmentation represents a basic and critical task for many applications, such
as robotics and autonomous driving: Simultaneous Localization And Mapping (SLAM)
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(a) Cross-entropy loss. (b) Dice Loss.

Figure 2.6: Loss functions for semantic segmentation.

need detailed indoor objects for mapping; an autonomous driving system requires object
detection, segmentation, and classification to construct a high definition map.

2.3 LIDAR SEMANTIC SEGMENTATION

Light Detection and Ranging or Laser Imaging Detection and Ranging (LiDAR) are par-
ticular detection systems which work on the principle of radar, but uses light from a laser.
These sensors produce a sparse prediction of the environment composed of point cloud
data. LiDAR semantic segmentation refers to 3D semantic segmentation of LiDAR data
and has in literature been tackled with different methods and deep learning architectures.

Before effective supervised learning methods were widely applied in semantic segmenta-
tion, unsupervised Point Cloud Segmentation (PCS) was a significant task for 2.5D and 3D
data (Chapter 3). This task aims at clustering points with similar geometric characteristics
without considering semantic information and can be included in the PCSS workflow as a
pre-segmentation, influencing the final result [20].

In general, all the approaches adopted can be broadly divided into three categories de-
pending on the way the LiDAR data are dealt. These methods are briefly analyzed in the
following sections and some distinctive architectures are presented.

2.3.1 Discretization based models

The first category of methods is based on a discretization procedure. This procedure
transforms point clouds into discrete data structures, before feeding them to the deep
learning architecture. The data structures employed can be dense like voxels or octrees
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Figure 2.7: Taxonomy of the methods used in LiDAR Semantic Segmentation.

(Section 3.1.1), or sparse like permutohedral lattices 2.

The main advantage of discretization based models is that these kind of structures can
be treated as three-dimensional images and dense or sparse convolutions can be easily
applied. In the following sections some approaches employing dense and sparse convolu-
tions are dealt.

Dense. The basic idea behind these methods is to divide the space occupied by point
clouds into occupancy grids, like voxels (Section 3.1.1), and assign the same label to all the
points belonging to the same volume. This procedure allows to produce voxels at different
levels of resolution. The advantage of using these data structures is that both the three-
dimensional shape and viewpoint can be encoded and voxels can be classified according
to the particular condition in occlueded, self-occluded and visible voxels. However the
performance is severely limited by the granularity of the voxels and the boundary artifacts
caused by the point cloud partition.

Sparse. On the other hand, LiDAR point clouds are naturally sparse, and their respective
volumetric representation accounts only for a small percentage of occupied cells. There-
fore, many approaches adopted sparse instead of dense convolutional networks.

2.3.2 Projection based models

Another category of methods for LiDAR semantic segmentation consists in projecting
the point cloud on a bidimensional structure to infer predictions and remap it back
in a later stage. The projection methods are based either on multi-view, spherical or

2In mathematics, the permutohedron of order n is an (n − 1)-dimensional polytope embedded in an n-
dimensional space.
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cylindrical projections. The deep learning architectures used in these cases are usually
well-established convolutional neural networks (CNN) models and pre-trained networks
on image datasets3.

Compared with discretization based models, these methods are able to improve the per-
formance for different tasks (Section 2.1) by taking multi-views of the interest object or
scene and then fusing or voting the outputs to make the final prediction. In addition they
are efficient in terms of computational complexity. However, projection based methods are
approximations of the input data, similarly to discretization-based architectures, and this
implies information loss.

2.3.3 Point Cloud based models

To avoid limitations posed by both projection and discretization based methods, e.g, loss
of structural information, many methods based on direct processing of point cloud data
have emerged and are still emerging nowadays.

Pointwise MLP methods. This kind of methods have been introduced by Qi et al. in 2017
with PointNet [30]. This framework represented a novelty in LiDAR semantic segmen-
tation as it achieved considerable results avoiding the use of convolutional networks,
but employing a simple architecture, able to learn per-point features by means of shared
multi-layer perceptrons (MLPs) and global features using symmetrical pooling functions.

On the base of PointNet, a series of other works have been proposed, e.g., PointNet++ [31]
was introduced to tackle the problem PointNet had in capturing local structures introduc-
ing a hierarchical network that applies PointNet recursively.
Another pioneer that has developed the method started by PointNet, is RandLA-Net [15].
RandLA-Net represents here a fundamental framework for large-scale point clouds and it
has been chosen as a model for this thesis. A more detailed explanation of RandLA-Net
architecture is given in Section 2.4.

Point Convolution methods. These methods propose effective convolution operators specif-
ically for point clouds. The pioneer work is here PointCNN [5] that uses a χ-
transformation instead of symmetric functions to canonicalize the order of points; this
way it performs a generalized convolution operation to learn features from unorderd and
unstructured point clouds.

RNN-based methods. RNN-based methods have been introduced to model the interdepen-
dency between point clouds. One of the major work here is PointRNN [9] which proposes
the network in two different versions depending on the recurrent module introduced, i.e.,
PointGRU and PointLSTM.

3For example important models are AlexNet [18], VGG [38], GoogLeNet [40], ResNet [14].

34



2.4. RandLA-Net

Graph-based methods. The last methods use networks based on graphs, that are really suit-
able data structures to represent point clouds as they can capture the geometric structure
and shape of objects. When representing point clouds with graphs, each node corresponds
to an input point and each edge represents the relationship between the point and its
neighbors. A milestone in graph-based methods is DGCNN [43] that constructs a local
neighborhood graph to extract the local geometric features and applies convolution-like
operations to capture local geometric structures.

2.4 RANDLA-NET

One of the main point based architectures for LiDAR semantic segmentation is RandLA-
Net [15] proposed by Hu et al. in 2019. RandLA-Net is one of the most lightweight
solutions available which is able to outperform many of other state-of-art models. For this
reason, it has been chosen as base model for this work.

RandLA-Net tackles the problem PointNet had in capturing context information of each
point, proposing an effective local feature aggregation module. This module is able to
automatically preserve complex local structures by progressively increasing the receptive
field for each point. More details on the architecture and this module are given in follow-
ing sections.

In general, RandLA-Net fundamental features are:
1. It only relies on random sampling (RS) within the network, thereby requiring much

less memory and computation.

2. The proposed local feature aggregator (LFA) can obtain successively larger receptive
fields by explicitly considering the local spatial relationship and point features, thus
being more effective and robust for learning complex local patterns.

3. The entire network only consists of shared multi-layer perceptrons without relying
on any expensive operations such as graph construction and kernelisation, making
it ideal for large-scale point clouds.

2.4.0.1 Architecture

The architecture of RandLA-Net is shown in Figure 2.8. It is structured as a classic
encoder-decoder architecture for semantic segmentation with skip connections (Section
2.1.3). The input point cloud is first fed to a shared MLP layer to extract per-point features.
Four encoding and decoding layers are then used to learn features for each point. At last,
three fully-connected layers and a dropout layer are used to predict the semantic label of
each point (Figures 2.8 and 2.10). The details are providided below.

Network Input: The input is a large-scale point cloud with a size of b ×N × din, where b
is the batch size, N is the number of points in the input point cloud and din is the feature
dimension of each input point. For SemanticKITTI dataset (Section 3.2.3) din = 3 since
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Figure 2.8: RandLA-Net original architecture [15].

each point is represented by its 3D spatial coordinates (x,y,z).

Encoding Layers: Four encoding layers, composed of a local feature aggregation module
and a random sampling operation, are stacked. These layers progressively reduce the size
of the point clouds and increase the number of features associated to each point in order
to extract even more information.

Decoding Layers: On the other side, four decoding layers use the k-nearest neighbours
(KNN) algorithm to find one nearest neighboring point for each query point and upsam-
ple the point feature set through a nearest-neighbor interpolation. Next, the upsampled
feature maps are concatenated with the intermediate feature maps produced by encoding
layers through skip connections, after which a shared MLP is applied to the concatenated
feature maps. More details will be given in sections 2.4.0.2.

Final Semantic Prediction: The final semantic label of each point is obtained through
three shared fully-connected layers and a dropout layer with ratio p = 0.5.

Network Output: The output of RandLA-Net is the predicted semantics of all points, with
a size of b ×N ×nclass, where nclass is the number of different classes that can be predicted.
Figure 2.9 shows the detail of RandLA-Net architecture.

2.4.0.2 Local Feature Aggregation module

The main characteristic of RandLA-Net is its local feature aggregation module, shown in
figure 2.10. It is applied to each 3D point in parallel and it consists of three neural units:
local spatial encoding (LocSE), attentive pooling, and dilated residual block.

Local spatial encoding: In this module all the points of a given point cloud P are pro-
cessed. In particular, k-nearest neighbours algorithm is used to find per each point pi its
neighboring k points according to point-wise euclidean distance measure. Then, the posi-
tion of each of the k neighboring points is encoded as follows:

rki =MLP
(
pi ⊕ pki ⊕ (pi − p

k
i )⊕ ||pi − p

k
i ||

)
(2.11)
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where pi and pKi are the x-y-z positions of points, ⊕ is the concatenation operation, and || · ||
calculates the Euclidean distance between the neighbouring and center points. Finally, for
each neighboring point pki , the encoded relative point position rki is concatenated with its

corresponding point features f k
i obtaining an augmented feature vector f̂

k
i . This passage

is not performed with SemanticKITTI (Section 3.2.3) as its point clouds are provided only
with x-y-z coordinates.

Attentive pooling: This neural unit is used to aggregate the set of neighbouring point fea-
tures F̂ i . Instead of the widely used max or mean pooling, an attention mechanism is used
to automatically learn important local features avoiding information loss.
Specifically, a shared function g(·), consisting in a shared MLP followed by softmax, learns

a unique attention score for each feature, that is used to weight the feature vector f̂
k
i and

learn the important features. The attention score and the final feature vector can be ex-
pressed as follows:

ski = g(f̂
k
i ,W ), f̃ i =

K∑
k=1

(f̂
k
i · s

k
i ) (2.12)

where W is is the learnable weights of a shared MLP.
Summarizing, given the input point cloud P , for the i-th point pi , LocSE and Attentive
Pooling units learn to aggregate the geometric patterns and features of its K nearest points,

Figure 2.9: RandLA-Net detailed architecture structure.
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2. SEMANTIC SCENE UNDERSTANDING

Figure 2.10: RandLA-Net [15] feature aggregation module.

and finally generate an informative feature vector f̃ i .

Dilated residual block: Since RS continously down samples the input point cloud, the
receptive field of each point needs to be increased significantly at each step to preserve the
geometric details of each input point cloud, even if some points are dropped. Connecting
multiple LocSE, Attentive Pooling and skip connections, a Dilated Residual Block is built
(Figure 2.10).
In RandLA-Net two sets of LocSE and Attentive Pooling are stacked as the standard resid-
ual block, achieving a satisfactory balance between efficiency and effectiveness. The over-
all module effectively preserves complex local structures considering neighbouring ge-
ometries and significantly increasing receptive fields, while being computationally effi-
cient.
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3Three-dimensional data

In this chapter a general overview of LiDAR point clouds is provided. Three-dimensional data
structures are described and the SemanticKITTI dataset is presented.

∗ ∗ ∗

Powerful computers and image acquisition devices have made it possible to capture
reality through serial sets of data and store these digitally into three-dimensional ob-
jects. These three-dimensional data sets can be processed and rendered much like two
dimensional data sets. However, adding a third dimension augments the amount of in-
formation to be processed, which is consequently greater than for two dimensional objects.

In the previous chapter we have analyzed the task of semantic segmentation in computing
images. But what happens when the data are not regularly distributed like pixels? What
are the differences whilst computing those data instead? What are the problems that arise?
As we have seen, 3D semantic segmentation methods employ different data structure to
deal with three-dimensional data, using even diverse architectures.
The following sections will provide a general overview of these three-dimensional data
structures: the LiDAR data, their properties and the problematics related are then specifi-
cally analyzed.

3.1 3D DATA STRUCTURES

A three-dimensional scene can be modeled in different ways. In general, the three-
dimensional information acquired through sensors is represented in different forms that
vary in both their structure and properties.
The most direct way to represent them is through point clouds, as they are the form in
which raw sensor data are naturally stored. However there are many other representa-
tions that can be used, which can be more or less suitable for a specific task.

3.1.1 Volumetric Models

Volumetric models are regular data structures that represent the three-dimensional vol-
ume of an object or 3D structure. They are the most common and intuitive representation
of 3D data as they are just an extension of bidimensional images to the third dimension.
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Figure 3.1: The Stanford Bunny [41] model in six different three-dimensional representa-
tions.

Volumetric representations are practical for rendering and smooth visualization. How-
ever they come to approximating the initial geometry and introduce aliasing artifacts. In
addition, their highly structured grid layout makes them suitable for processing using 3D
convolutional neural networks.

Voxels (Figure 3.1e) are the equivalent three-dimensional representation of an image pixel.
A voxel is formally a three-dimensional cubic unit block that represents a naive extension
of occupancy grids1 to the three-dimensional space. A sparse voxellized representation
can be obtained directly from point clouds, by discretizing the space and filling voxels
where one or more points are present. Unfortunately this representation is rough and
bulky, hence octrees are often preferred.

Octree (Figure 3.1f) is a tree-based data structure which provides a finer representation of
the 3D space by recursively subdivide voxels into octants while keeping only the occupied
cells.

3.1.2 Shell or boundary models

Shell or boundary (B-Reps) models represent the boundary of the object, not its volume.
Almost all visual models used in reality capture workflows, games and film are boundary
representations.

The main B-Rep model is 3D mesh (Figure 3.1d). A 3D mesh is a geometric data structure,
commonly used in computer graphics, which encodes a 3D object geometry in terms of
a combination of edges, vertices, and faces. A mesh represents the surface of a 3D object
using polygon (e.g., triangles or quadrilaterals) shaped faces is termed as the polygon
mesh. A regular mesh is composed of only a single type of polygons, like the most common
triangular mesh.

1An occupancy grid is a bidimensional space subdivided through a grid system representing an environment.
In this grid system the occupied cells are filled while the free space is not.
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By extending this representation it is possible to obtain different B-Reps, which are always
composed of vertices, edges and faces but with different shapes but representing both the
interior volume along with the object surface (volumetric mesh).

Meshes are a great way to explicit the geometry of a point cloud, and they frequently allow
for a significant reduction in the number of points required as vertices. On top, they permit
to get a sense of the relationship between objects through the faces’ connectivity. However,
meshing is an interpolation of the base point cloud geometry, and can only represent the
data to a certain degree, which is determined by the mesh’s complexity. There are a variety
of ways for meshing a point cloud, but the best results typically necessitate some a priori
knowledge of the object’s shape.

3.1.3 Parametric models

Parametric models use constructive solid geometry (CSG) technique to define complex
objects as a composition of feature-based simple objects such as cubes, spheres, cones, and
cylinders with a set of operations such as union, intersection, addition, and subtraction.
This representation is often used for CAD models (Figure 3.1a) in computer vision and
graphics. Building parametric models form point clouds is however a hard task since it
demands a very smart structuration of the object.

3.1.4 Depth maps

A depth map (Figure 3.1b) is an image that encodes depth information about related to
the 3D scene from a single viewpoint. This information is encoded using height above the
ground, horizontal disparity and angle with gravity for each pixel. This representation
is fine if surface information linked to a known point of view is enough. For example,
in real-time autonomous driving scenarios, depth maps allow to map the environment at
360◦ very quickly. Depth maps are good data structure for low memory requirements, but
they suffer for week topology and cannot describe a full 3D scene on their own.

3.1.5 Point Clouds

A point cloud (Figure 3.1c) is a set of data points in the 3D space. Each point is spatially
defined by a triplet of coordinates (x,y,z) and a combination of such points can be used to
describe the geometry of an object or the complete scene.
Point clouds are easily obtained as a map of the external surface of objects through reality
capture devices, like LiDAR sensors. However, they can also be the result of Photogram-
metric Scanning, depth sensing, and more recently deep learning through Generative
Adversarial Networks (GANs).

Point clouds provide simple yet efficient and precise 3D data representation and can be
subjected to operations like fast linear transformations, objects combinations and fast ren-
dering, i.e., projects and draws the points onto an image plane.
These benefits, on the other hand, must contend with memory constraints and free space
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Figure 3.2: Example point cloud from the SemanticKITTI dataset.

representation issues: detecting the same position several times results in multiple over-
lapping dense points, while non-measured space is treated similarly as free space. In ad-
dition, even if fast rendering is appliable directly on point clouds, in the most of the cases
it is preferred to utilize a solid representation of the three-dimensional geometry, deriving
a mesh with a suitable surface reconstruction technique.

3.2 LIDAR POINT CLOUDS

LiDAR point clouds are the most commonly used data in point cloud semantic segmenta-
tion. With the increasing application of this method in multiple fields, such as autonomous
driving, remote sensing, photogrammetry, there is a rise of large-scale datasets with more
than one million of points. Nevertheless, developing fine-annotated 3D LiDAR datasets is
extremely labor intensive and requires professional skills.

3.2.1 Datasets

Data and algorithm selections are strongly driven by the requirements of specific applica-
tions. There exist many kinds of point cloud data, depending on the technologies used for
the acquisition.

In general, LiDAR datasets (Table 3.1) can be divided into three groups:
1. Static datasets: data collected from static viewpoints by terrestrial laser scanners or

using MLS (Mobile Laser Scanning) systems that capture mainly static scene objects
for applications such as street view, 3D modeling, and virtual realities.
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2. Sequential datasets: data collected as sequences of frames from vehicular platforms
for ADAS (Advanced Driving Assistance System) or autonomous driving applica-
tions, which can be further divided into datasets with pointwise or 3D bounding box
annotations. These datasets usually contain more frames and moving objects with
respect to static datasets, but the sparsity in their points is higher especially on the
vertical direction.

3. Synthetic datasets: data collected in a virtual world by simulating any of the above
data acquisition systems. The problem of using such datasets is caused by the large
gap between synthetic and real scenes. Synthetic scenes can generally be very realis-
tic, but they lack accuracy in detail.

Image and RGB-D datasets (Section 2.2.1.3) have much larger scales and their number of
pixels/frames are more sufficient than 3D LiDAR ones. Although the studies on image
and RGB-D still face the data hunger problem (Section 3.2.2), it is more serious in the
domain of 3D LiDAR datasets.

Among the most popular dataset we can identify Semantic 3D [13] as the existing largest
LiDAR dataset for outdoor scene segmentation tasks. It is a static dataset composed of
more than 4 billion points, split into training and test sets with nearly equal size, and
labeled with 8 classes. Paris-Lille-3D [35] is another popular MLS point cloud dataset with
more than 140 million labelled points, acquired with a mobile LiDAR in two French cities,
Paris and Lille. Despite it is a static dataset, it suits autonomous vehicles’ applications.

SemanticKITTI [2] is a dataset built on KITTI dataset [12], acquired from an autonomous
driving platform and records six hours driving using digital cameras, LiDAR, GPS/IMU
inertial navigation system on European streets. The large data size makes SemanticKITTI
very helpful for training deep learning models. Indeed, it is used as a benchmark in
RandLA-Net (Section 2.4) and also in this work. A detailed description is provided in
Section 3.2.3.

Figure 3.3: Acquisition systems for (a, b) static datasets, (c) dynamic datasets, (d) synthetic
datasets [10].
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Table 3.1: The main datasets for LiDAR semantic segmentation and their features [10].

3.2.2 Data hunger

The performance limitation caused by insufficient training data is called the data hunger
effect, which is reflected on both data size and diversity.
The LiDAR semantic segmentation datasets (Section 3.2.1) are annotated entirely or par-
tially by humans, which takes time, is labor intensive, necessitates specialized knowledge
and software and is more difficult than annotating images since 3D data are more difficult
to be interpreted. Because of these challenges, publicly accessible datasets for LiDAR
semantic segmentation are far smaller and less diverse than those for 2D images. As a
result, 3D semantic segmentation may face a serious data hunger problem.

Many datasets for LiDAR semantic segmentation have been developed, and used as
benchmark for deep learning models comparison, so far. But each of these dataset has its
own size and composition of scenes.
On this concern, Gao et al. in 2020 [10] led experiments on such different datasets and
deep learning models for semantic segmentation, pointing out that the problem is strictly
connected to two factors: scene diversity and dataset size.

The scenes diversity represents a problem for deep models, since the accuracy decreases
whenever the training is made on a dataset and the testing on a different one. In addition,
a better understanding happens if the scenes content is heterogeneous, but mixing datasets
negatively impacts the model learning due to the domain gap between different data. Fur-
thermore, some other factors also affect model performance, such as the sensor difference,
especially in image-based approaches. The data hunger problem in scene diversity is still
challenging for 3D LiDAR semantic segmentation models to improve their generalization
ability.

On the other hand, also the dataset size highly impacts the performances of deep learning
models. In general, a large-scale dataset is more effective on whatever model, but the
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Figure 3.4: Classes of SemanticKITTI [2].

impact the size has highly depends on the model construction. For example, Gao et al.
[10] shown that in PointNet [30] and derived models (Section 2.3.3) the performance,
compared with the amount of data required saturates with 25% training data. The most
of deep learning models continuously improve their performances if fed with more data,
and would require more than existent datasets.

Finally, even the imbalance of classes can represent a problem (as pointed out in Section
2.2.3) for LiDAR semantic segmentation, as well as the distance from the sensor and the
number of involved points. In chapter 4 many analyses to further investigate those prob-
lems are led on the selected dataset, to have more knowledge on the techniques to be
adopted in order to face them.

3.2.3 SemanticKITTI

SemanticKITTI is the dataset chosen for this work. It is actually one of the largest and
most popular datasets suitable for various tasks, including LiDAR semantic segmentation.
It was developed by Behley et al. in 2019 [2] and contains detailed point-wise annotations
with 28 classes, on 22 different scenes.

The dataset was obtained by annotating the sequences of the KITTI dataset, published by
Geiger et al. in 2012 [12], acquired with a velodyne system (Figure 3.3c), composed of a
LiDAR sensor, a stereo camera rig (RGB + depth), a global positioning system (GPS), and
Inertial Measurement Unit (IMU). The KITTI dataset provided many benchmarks, but
the only part exploited for SemanticKITTI was the odometry from the SLAM system, on
which the labels were placed.
The LiDAR acquisitions, taken in the German city of Karlsruhe in rural areas and on high-
ways, are highly heterogeneous as they present diverse landscapes with variable sequence
lengths and number of points per acquisition.

All the data points have been labeled according to the object they belong to, providing a
ground truth for the supervised task of point cloud semantic segmentation. However, the
semantic labels have been provided only for the training and validation sequences, while
the test ones are left as a challenge. In the original setup, the sequences chosen for training
are 00,01,02,03,04,05,06,07,09,10, sequence 08 was chosen for validation, while
sequences from 11 to 21 for test.

45



3. THREE-DIMENSIONAL DATA

(a) Training sequences. (b) Test sequences.

Figure 3.5: Sequences of SemanticKITTI [2].

To make comparison with other benchmark datasets the classes have been reduced to 19.
Figure 3.4 shows the overall frequency of each class in the dataset. SemanticKITTI has
been chosen as a benchmark for this work for the diversity of its scenes and large-scale of
dataset.
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4Dataset Analyses

In this chapter some analyses led on the SemanticKITTI dataset are presented. General features of
the dataset and features related to the performance of RandLA-Net on it are investigated.

∗ ∗ ∗

As pointed out in the previous chapter, when dealing with LiDAR point clouds some
problematics linked to the data properties arise. SemanticKITTI dataset (SemanticKITTI
[2], presented in Section 3.2.3) has been chosen since it provides a wide and heterogeneous
dataset, suitable for semantic segmentation. In this chapter we are going to analyze its
properties in order to have a broader overview of the problem to deal with and a solid
understanding of the material available.

Section 4.1 presents some general analyses of the raw LiDAR data, while Section 4.2 reports
other analyses, specifically related to the output of the chosen architecture (RandLA-Net
[15], investigated previously in Section 2.4).
Notice that the whole study is completely independent with respect to both the dataset
and architecture: even if SemanticKITTI and RandLA-Net are chosen it can be generally
adapted to whatever LiDAR dataset or model.

Also, given that test sequences (from 11 to 21) are provided with no ground truth la-
bels, we consider in our setup only sequences from 00 to 10. Hereinafter sequences
00,01,02,03,04,05,06,07,09,10 will be considered as the training data, while se-
quence 08 as the test one.

4.1 GENERAL ANALYSES

General analyses are led to understand how the point clouds involved are structured and
distributed in the space. In particular, the properties analyzed are the following:

• The distribution of classes within a certain distance from the LiDAR sensor.

• The distribution of classes at a certain height.

• The distribution of number of points assigned to each class in each sequence.

4.1.1 Distances

The distribution of the distance of the classes with respect to the LiDAR sensor position
is shown in Figure A.1. It follows a power law distribution as the number of points expo-
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nentially decrease with increasing values of the distance. This means that the number of
points is greater for closer objects with respect to farther objects, which is reasonable as
the point clouds are acquired with a LiDAR sensor.

The figure shows also the unlabeled class since this analysis is made a priori considering
the ground truth labels. It is interesting to notice that this distribution has a curious
behaviour as it starts again to rise when a threshold of 50m is overcome. This is due to the
fact that after a certain threshold (50m in this case) all the points are classified as unlabeled
because they are considered too far from the LiDAR sensor to be classified correctly with
a sufficient level of confidence.

The average distance per class in the training and test sequences is shown in Figure 4.1a.
Training and test sequences do not differ much in general, even if the training samples are
on average a little more distant.

(a) Distances. (b) Heights.

Figure 4.1: Analyses of the distances and heights relative to the sequences in the training
set and in the test set. The measures are expressed in meters (m).

4.1.2 Heights

The heights plot of Figure A.2 shows the distribution of the points per class at a certain
height from the LiDAR sensor position (0m). As expected the height is greater for objects
that are actually higher and lower for shorter ones. Notice that the height is computed
with respect to the LiDAR and not the ground, hence also negative heights are resonable.

Figure 4.1b shows the average heights of the points per class in the training and test se-
quences. In general the result confirms that the vertical resolution is limited, which is one
of the problematics related to sequential datasets like SemanticKITTI. The greater vari-
ability in the test heights is due to the fact that a single sequence is considered, while for
training the result is averaged on 10 sequences.
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4.1.3 Number of Points

Table 4.1 presents the total number of points assigned to each class in each sequence,
which is represented also in the histograms of Figures 4.3 and 4.2.

The distribution of classes per sequence is pretty uniform. However there is a great imbal-
ance in the overall number of points assigned to some classes with respect to others. For
example classes like building, vegetation and road hold a huge number of points (order of
108), while classes like motorcyclist and other-vehicle hold very little points (order of 105).

In addition, there are some "holes", i.e., some sequences lack in some classes (e.g., sequence
01 lacks of bicycle, motorcycle, truck, person, bicyclist and parking). These missing class are
typically the least frequent ones and many sequences lack in those classes (e.g., bicyclist is
absent also in sequences 03 and 04).

Table 4.1: Heatmap table of the number of points per each class in each sequence.

Figure 4.2: Flat plot of the overall number of points per each class in log scale.
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Figure 4.3: Three-dimensional plot of the number of points per each class in each sequence
in linear scale.

This imbalance of points per class is important to be considered. Its influence on the
outcome will be investigated later in Chapters 5 and 6 and will emerge also in the analyses
of the following sections.

Overall, our general analyses confirm the results obtained by Gao et al. in [10] where
similar analyses were led on the same dataset. In fact, according to them, the dataset has a
good diversity of vehicle distribution. However, persons are scarce, while vegetation takes
almost 50% of the whole points.

4.2 MODEL-BASED ANALYSES

Structural properties of the dataset have emerged form the previous section. However the
correlation of the dataset properties with the model outcome can constitute a fundamental
element to understand how those properties affect the results. Therefore the objective of
the analyses led in this section is to relate the dataset properties with the output of the
considered model.

The results obtained from the training on RandLA-Net [15] are here taken into account.
The network is trained for 20 epochs with batch size b = 4 and the the model that gave the
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best mIoU is considered. The predictions of that model are taken in order to investigate
the following aspects:

• The number of correctly segmented points and not with respect to the distance from
the sensor.

• The number of points with respect to the obtained mIoU.
In addition, some Network Science techniques were exploited in order to retrieve other
useful information and properly set up the methods.

4.2.1 Prediction vs distance

As shown in figure 4.4 the number of correctly classified points is greater at shorter dis-
tances and decreases if the total number of points in the class is small. Note that the class
unlabeled is never predicted, therefore all the points are reasonably wrongly classified in
one of the other 19 classes (Figure 4.4a) but can be considered as correctly classified (Fig-
ure 4.4b). For classes with a great mIoU, the distribution of the correctly classified points
in less related to the distance measure.

(a) Unlabeled included. (b) Unlabeled excluded.

Figure 4.4: Overall distribution of correctly and wrongly classified points.

4.2.2 Points vs mIoU

The plot of the mIoU per each class is shown in Figure 4.5. Comparing the diagram with
the one of Figure 4.2, it is clear that in general the classes with the largest number of points
are able to achieve larger values of mIoU.

There is also a weak correlation between the mIoU and the average height of the points. In
fact in the test sequence, classes motorcyclist and other-ground have very negative distances
and achieve the worst values of mIoU.
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Figure 4.5: mIoU per each class resulting from the vanilla training on 15 epochs. Colors
are given according to the subdivision of classes set in section 4.2.3.3.

4.2.3 Network Science analyses

Network Science techniques [1] are employed in order to understand further relationships
and properties of the dataset, related to the model outcome. The confusion matrix result-
ing from the vanilla training (Figure 4.6) is here treated as an adjacecy matrix A, i.e., a
matrix representation of a graph, where the entries of the matrix represents the nodes and
the scores in the matrix represent the weights of the links between nodes.

In our case the matrix represents a direct graph because it is not symmetric. The entries on
the columns are the true labels and the elements in the rows are the predicted labels. The
link between a true label and a predicted label is present if a point with that true label is
predicted with that predicted label.
The following sections give the details about the algorithms employed and the results
obtained from each of them.

4.2.3.1 PageRank

PageRank [29] is an algorithm proposed by Page et al. in 1999. It was firstly employed to
sort the entries produced by a web research and it was largely applied in ranking pages
on Google search engine.

The task of PageRank is to provide a ranking of the entries in the network graph identify-
ing among them the authorities and hubs: the authorities are the nodes with the greatest
number of incoming links, while the hubs are the nodes with the greatest number of
outgoing links. In our case, the analysis of the authorities provides a ranking among the
predicted classes, while the analysis of the hubs provides a ranking among the ground
truth classes.
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Figure 4.6: Normalized confusion matrix resulting from the vanilla training. The matrix
partition is set according to the analysis of Section 4.2.3.3 exception made for classes build-
ing and terrain.

PageRank is based on the equation:

pt+1 = cMpt + (1− c)q, M = A · diag−1(d) (4.1)

where d is the degree vector, c = 0.85 is the dumping factor and q is the teleport vector.
The authorities are given by r = p∞ and the solution can be found solving a linear system
through power iteration. To find the hubs it is sufficient to transpose the adjacency matrix
A.

The results of PageRank are given in Figure 4.7. Classes like vegetation, road and building
appear in the highes ranked positions both in authorities and hubs scores, while other-
ground and bycicle are low rated in both. Overall we can notice an accordance of both the
rankings with the results found before, regarding the mIoU (Figure 4.5) and the number of
points per class (Table 4.1 and Figure 4.2).
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4.2.3.2 HITS

For the same purpose another method was employed. HITS [17] is another algorithm
similar to PageRank providing authorities and hubs.
HITS is based on the equation:

at+1 =Mat , M = AAT (4.2)

where a are the authority scores.

The results of the analyses with this algorithm are shown in Figure 4.7. The vegetation class
is also here the most rated; the same holds for many other hubs and authorities found
previously. Given that the hubs and authorities almost match, the considerations made for
PageRank hubs and authorities ranking distribution hold also in this case.

(a) Authorities of PageRank. (b) Hubs of PageRank.

(c) Authorities of HITS. (d) Hubs of HITS.

Figure 4.7: Hubs and authorities colored according to their community as in figure 4.8.
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Figure 4.8: Resulting communities from Spectral Clustering analysis.

4.2.3.3 Spectral Clustering

The last technique used here is Spectral Clustering (SC) [28], an algorithm that provides
a subdivision of the entries in the network, represented by the matrix. It proceeds with
subsequent subdivision in two communities and iterates until the estimated number of
communities is reached.

The number of communities is estimated through the following quality measures:
• The Conductance:

Φ(k) = min
|S |=k

ϕ(S), ϕ(S) =
cut(S,Sc)

min(assoc(S), assoc(Sc))
(4.3)

where cut(S,Sc) =
∑

i∈S,j∈Sc aij is a partition of the vertices of the graph into the two
disjoint subsets, S and Sc. The two subsets represent the two communities. Finally,
V is the set of vertices of the graph and assoc(S) =

∑
i∈S

∑
j∈V aij is the total number

(or weight) of the edges incident with S .

• The Modularity:

Q =
1
2L

∑
i,j

(
ai,j −

ki · kj
2L

)
· η(ci = cj ), η =

1 if true,

0 if false.
(4.4)

where ai,j are the elements of the confusion matrix, L is the total number of links, ki
is the degree of node i and ci represents community i.
The conductance plot has a number of local minima that roughly defines the number
of communities. When Q ∈ [0.3;0.7] the number of subdivisions is optimal.

In our case, Spectral Clustering has been employed to identify the communities among
the classes. The first subdivision identified the community composed by {road, parking,
sidewalk, other-ground, terrain}, the second subdivision gave {person, bicyclist, motorcyclist},
the third {car, bicycle, motorcycle, truck, other-vehicle}, and the last one the two communities
{ fence, vegetation, trunk, pole, traffic-sign} and {building} (Figure 4.8).

Observe that the subdivision of the classes obtained with this method fairly matches the
a priori categorization made for SemanticKITTI (Figure 3.4). In fact, the elements in each
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cluster share peculiarities with the other elements belonging to the same community and
result very different with respect to the elements in the other communities.

This subdivision constitutes a fundamental element that will be kept into consideration
in the next chapters for choosing the best learning methods to be adopted. These learn-
ing methods are presented in Chapter 5, while the obtained results in Chapter 6. From
now on, the communities will be identified as macro-classes and the elements inside each
macro-class as micro-classes.

If the PageRank or HITS ranking is integrated with the SC subdivision, we can identify
also a leader class in each community, i.e., the class that achieves the highest score as a
hub or authority according to a ranking algorithm. As the two ranking algorithms are
pretty in agreement and also do the hubs and authorities, the choice of the leader classes is
straightforward. Hence, the macro-classes will be identified in the following chapter with
road, person, car, vegetation and building classes.
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5Proposed Methods

In this chapter the proposed learning strategies are explained. All the curriculum learning and
contrastive learning techniques are dealt in detail. The methodologies to obtain fair results among
the macro and micro classes are introduced.

∗ ∗ ∗

The subdivision of the classes introduced in the previous chapter has led to the choice of
specifc learning approaches to improve the performances of the model.
The main idea is to rely on this hierarchical representation (Figure 5.1) in order to wisely
organize the data and choose the learning strategies to employ accordingly. The solutions
adopted are presented in the following sections.

Figure 5.1: Hierarchical organization of the classes based on the analyses of Chapter 4.
Note that the communities are reduced to 4 (the last 2 subdivisions are merged) to fit the
batch size b = 4.

5.1 CURRICULUM LEARNING STRATEGIES

As stated by Y. Bengio, one of the fathers of deep learning, in 2009 in [3]:
Humans and animals learn much better when the examples are not randomly presented
but organized in a meaningful order which illustrates gradually more concepts, and
gradually more complex ones.

In fact the idea of Bengio was to apply this graduality to deep learning as well. In this
framework the model is trained first with easies examples and then the knowledge is
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refined with more complex ones at advanced stages.

The definition seems pretty straightfoward and simple. However the task to determine
what is simple and what is difficult is a hard work. Curriculum Learning was originally pre-
sented to solve a classification problem (see Section 2.1.1). In this work, it is instead applied
to the complex problem of LiDAR Semantic Segmentation.
Strategies to organize the samples in a meaningful way are tried. Also, we focus the at-
tention on particular training strategies to improve the performances with a curriculum
coarse-to-fine approach [39].

5.1.1 Batch organization

Providing samples in a meaningful order can be interpreted in many ways. However, if
we follow the general approach adopted in classification the meaningful order can be seen
as a witty batch organization.

Formally, given the training set Xt = {x1,x2,x3, · · · ,xN }, the batch is a subset of the training
set of size b, i.e., B = {xi1 ,xi2 , · · · ,xib } ⊂ Xt . Our model architecture (RandLA-Net, analyzed
in Section 2.4) has b = 4 as batch size, so it is able to process b = 4 LiDAR point clouds at
a time. This first curricular approach aims at choosing the b = 4 point clouds by sampling
the indexes ik , where k = 1, . . . ,4, according to some criteria, explained in the following
sections, and provide a gradual improvement of the network skills.

Figure 5.2: Visual example of a heterogeneous batch organization. The b = 4 point clouds
are here very different one another. The samples presented in this figure are: 0000281x05,
0000198x04, 0000345x01, 0000002x07 from left to right, where the notation AxB means
point cloud A in sequence B. The classes colors are the standard of SemanticKITTI (see
Section 3.2.3).

5.1.1.1 Random

Observing closely each point cloud xi , it is composed of a variable number of points. Each
point belongs to a different class and can be seen as part of a different object.
However the number of points per each class varies a lot from one point cloud to another
(see Section 4.1, Figure 5.2). Therefore, the first idea proposed is not to place in each batch
samples completely at random, but in such a way to have heterogeneous batches, composed
in a certain percentage of classes belonging to each of the macro-classes. The tentatives
proposed in this view are listed below.
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• A first simple organization is based on the idea of sampling each batch in such a way
that in each batch all the macro-classes are present.

• Another trial proposed is shown in Figure 5.3. Here an order based on the number
of points per each class is provided in addition to the samples organization.

Figure 5.3: Example representation of batch where each class is present and the overall
percentage of points per macro-class is fairly balanced.

5.1.1.2 mIoU-based

The metric chosen to order the batches is here the mIoU (Section 2.2.2). Differently from
the trials based on the number of points, this metric is model-based; therefore a first pre-
training of the network is required, which is performed with the vanilla setting. The dif-
ferent sampling methods are presented below.

• In a first trial the samples are ordered by decreasing mIoU (Figure 5.4), without keep-
ing into consideration the batch size.

• In a second trial, they are ordered by decreasing mIoU respecting the batch compo-
sition with all the macro-classes (Figure 5.5).

5.1.1.3 GGBB

This last approach performs a fairness sampling both in terms of difficulty and classes
involved. In fact, here the batches are composed of 2 good (type G) point clouds and 2 bad

Figure 5.4: Example representation of curriculum learning batch creation. Difficulty is mea-
sured using mIoU or number of points.
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Figure 5.5: Example representation of curriculum learning batch creation respecting
macro-classes sampling in the organization of batches (4 different orders within the same
set). Difficulty measured using mIoU or number of points with respect to macro-classes.
The crossed samples indicates the the sample was just selected in other categories.

(type B), where good and bad are determined with respect to the previously considered
evaluation parameters. The trials within this configuration are described below.

• The former GGBB batch configuration is based on the mIoU is sampled respectively
from the top and bottom of the lists, according to the ordering per macro-class with
respect to the mIoU (Figure 5.5 but sampling 2 classes queue from top and 2 from
bottom).

• The latter GGBB batch configuration is sampled similarly, but relying on the number
of points per macro-class.

5.1.2 Coarse-to-Fine training

The objective of Coarse-to-Fine training strategies is similar to Curriculum Learning via
batch organization, i.e., to provide a priori knowledge on the general grouping among
similar classes and learn task from the easiest to the hardest. Nevertheless, the curricular
approach is here dealt under a different persepective.

The hierarchy of the classes is now used in order to pretrain the model on the coarse task
and fine tune it on the fine class (according to Figure 5.1). In this way a general broad
separation is achieved first and the knowldege is then refined at advanced stages. The
three different methods tested are explained in the following sections.

5.1.2.1 Final dense layer

One of the possible training schemes to perform a pretraining of the network on the macro-
classes adds a dense layer at the output of the network. In this way the micro-classes (19 in
our case) at the output are mapped to the macro-classes (4 in our case). After the network
is trained for N epochs the last layer is discarded and the network is trained for 2N epochs
on the standard architecture. Figure 5.6 illustrates the procedure.
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5.1. Curriculum Learning strategies

Figure 5.6: Graphical representation of the coarse-to-fine training scheme.

5.1.2.2 Simple C2F

Another possible training scheme follows a similar approach. Also here a pretraining of
the network on the macro-classes (4 in our case) is performed. However in this training
scheme the last layer is reduced to a smaller one, that classifies only the macro-classes.
After the network is trained for N epochs this last layer is discarded and the backbone is
preserved with all its weights.
A new layer that classifies all the micro-classes (19 in our case) is added at the output
replacing the one deleted and the network is fine tuned for other 2N epochs. This scheme
is shown in Figure 5.7 [39].

Figure 5.7: Graphical representation of the simple coarse-to-fine training scheme.

5.1.2.3 Progressive

The progressive coarse-to-fine training provides a training scheme where the output of
the coarse training is re-feed to the network as input later.
As the scheme in Section 5.1.2.2 a pretraining of the network on the (4 in our case) macro-
classes is performed as a first stage and trained for N epochs.

The second stage instead is completely different: here the network weights are re-trained
from scratch; what remains from the first stage is the coarse output prediction yM with is
fed to the network together with the input x. The second stage classifies all the (19 in our
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case) micro-classes and it is trained for N epochs [32].

Three different versions of this scheme have been tested:
• A single channel progressive curriculum learning, where the groundtruth labels are

included in the second training stage.

• A single channel progressive curriculum learning, where the argmax predictions are
included in the second training stage, as shown in Figure 5.8a.

• A multiple channels progressive curriculum learning, where the softmax predictions
are included in the second training stage, as shown in Figure 5.8b.

(a) Single channel. (b) Multiple channels.

Figure 5.8: Graphical representation of the progressive coarse-to-fine training schemes. In
the single channel version (a) the coarse predictions on the training set are given as an
input to the network in the second stage. In the multiple channels version (b) the network
is fed with softmax coarse prediction vectors (N channels) instead of coarse labels.

All the above proposed solutions clearly enhance the performances of the model adding
some order and a hierarchical organization to the overall structure of classes. However in
these the hierarchy and grouping of classes are not yet taken into account when the loss
function is computed and the weights of the networks are updated.
In this perspective other training methodologies needs to be introduced to improve and
speed up the performances.

5.2 CONTRASTIVE LEARNING METHODS

Contrastive Learning methods are further proposed to obtain a better distinction among
different classes.

Contrastive Learning is a machine learning technique used to learn the general fea-
tures of a dataset without labels by teaching the model which data points are similar or
different [4].
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This technique can be applied either at the input level, the feature level or the output level.
In our case, Contrastive Learning is applied at feature and output level as shown in Figure
5.9. In general the main objective of this method is to cluster similar samples belonging
to the same class and put apart samples that belong to different classes. Many ways to
achieve that can be employed both at a feature and output level. The following sections
provide adetailed explanation of such methods.

Figure 5.9: Contrastive Learning applied at feature and at output level. Loss terms are
computed in order to separe different classes and cluster elements belonging to the same
class [26].

5.2.1 Output level

Contrastive Learning at the output level achieves the classes separation directly on the
labels; this is obtained by means of particular loss functions or additional terms addeded
to the original loss. More details are given below.

5.2.1.1 Weighting schemes

The general loss function employed in the employed model RandLA-Net (Section 2.4) is a
classic categorical cross-entropy function, i.e.:

LCE =
1
M

M∑
k=1

LCEk , LCEk = −βk
N∑
i=1

pi · logpi (5.1)

where M is the number of classes, pi is the output of the output softmax layer and βk is
the weighting factor for class k.

One of the most direct modifications that can be performed on this loss function is to
change the βk factor in order to give different weights to the different classes. In the general
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cross-entropy function βk = 1. In the original paper of the architecture [15], βk = 1
mk

where
mk is the number of points in the considered class k. In our configurations we tried to set
also βk =

1√
mk

.

5.2.1.2 Dice loss

In semantic image segmentation (Section 2.1.3 one of the most diffused loss functions is the
Dice loss, which is based on the Dice coefficient, a widely used metric in computer vision
community to calculate the similarity between two images [16]. Dice loss can be written
as:

Ldice = 1−
2yp̂ +1
y + p̂ +1

(5.2)

where y is the ground truth and p̂ the prediction. This loss function has been tested be-
cause it considers the loss information both locally and globally, which is critical for high
accuracy.

5.2.1.3 Focal loss

Antoher loss function employed is focal loss [21]. This function has been tested because
it down-weights the contribution of the easiest examples and enables the model to focus
more on the most difficult ones. This way it works well for highly imbalanced class sce-
narios, like the one we are taking into consideration (see analyses of the dataset in Chapter
4). Focal loss can be expresed in analytical terms as:

Lf ocal = −αt(1− pt)γ logpt (5.3)

where αt ∈ [0,1] is a weighting factor (that can be set to 1
M as in equation 5.1 and γ > 0 de-

fines how much the harder examples are weighted more with respect to the cross-entropy.

All these loss functions are traditional losses for semantic segmentation and are employed
in case of unbalanced classes. On the other hand all of them do not take into account priors
on the classes but the number of points per class.
In this context, the analyses led in Chapter 4 suggest another approach that is able to
exploit even the macro-micro classes subdivision and other priors obtained performing a
first pretraining of the network with the standard setting.

5.2.1.4 Triplet loss

The first real tentative of applying Contrastive Learning starts from here. Triplet loss is
loss function where a baseline (anchor) input xa is compared to a positive (truthy) input
xp and a negative (falsy) input xn. The distance from the baseline (anchor) input to the
positive (truthy) input is minimized, and the distance from the baseline (anchor) input to
the negative (falsy) input is maximized [37].
In mathematical terms it can be described as euclidean distance, i.e.:

Ltriplet =max{φ(xa,xp)−λ ·φ(xa,xn) +µ,0} (5.4)
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where φ(·) is a loss function (we used the categorical cross entropy at the output level,
while the mean squared error (MSE) at feature level). φ(xa,xp) represents the attraction
force, i.e., the standard loss part. φ(xa,xn) instead represents the repulsion force where
the samples are put far from others. λ is the coeficient that determines the measure in
which this force exert w.r.t. the attractive one. It can be decomposed as λ = αλd where α
is determined according to a prior, while λd is fixed.

The choice of the negative sample is made here exploiting the prior on the prediction the
network is able to do in the vanilla configuration: each point is pushed away from the
closer one that belongs to a different class (which could lead the network to a misclassi-
fication). For this purpose we referred to the confusion matrix of Figure 4.6 to sample xn
and choose α accordingly.

In general the wrongly-assigned labels assigned are mostly referred to classes within the
same macro-category or classes with a huge number of points (more details on the anal-
yses are given in Chapter 4 while a more detailed discussion on the results obtained are
provided in Chapter 6). A meaningful example of this is presented in Figure 5.10.

Figure 5.10: Example of triplet loss in d-dimensional space with d = 2. The bicycle pre-
diction (anchor) is attracted by the bicycle sample (positive) and repulsed by the morcycle
sample (negative).

The positive and negative sample are here (output level contrastive learning) the labels of
those selected classes. The anchor sample is the prediction of the network. At a feature
level instead the positive and negative samples are some prototype features referred to
each class, while the anchor is the feature vector itself. More details will be given in Section
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Figure 5.11: Triplet loss and other loss functions similar to triplet loss. The arrow repre-
sents the learning step. [24]

5.2.2.

There are many variants of the triplet loss, e.g., the contrastive loss, the constellation loss and
the multi-class loss [24] (Figure 5.11). However the losses in triplet loss family are relative
loss functions, which are not as stable as a classic categorical cross-entropy. This way other
solutions have been proposed. Instead of replacing the whole loss function, additional loss
terms can be added to the standard one. In this case the additional terms act as regularizers
and achieve more stability. The following parargaph explains those methods.

5.2.1.5 Hierarchical loss

The hierarchical loss we introduce here is not a standard loss function as the ones described
in the above paragraphs. Our proposed loss includes a loss term that accounts for priors
on the classes hierarchy (Figure 5.1). The loss is composed in the following way:

Lhierarchy = Lmicro +γ · Lmacro (5.5)

where Lmicro is the loss function computed on the micro-classes, Lmacro is the loss function
computed on the macro-classes weighted by a factor γ [25].

5.2.2 Feature level

Contrastive learning at the features level achieves the classes separation by means of par-
ticular loss functions or additional terms addeded to the original loss. However, differently
from contrastive learning at the output level, some prototypes of features per each class are
considered, instead of labels.
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The idea behind prototypes is to have a target ideal feature per each class, in order to have
a measure of how much the feature from the processed sample is close to the target. This
way prototypes have been built, one per each class (19 in our case).

Each prototype Γt is a (1,df eats) feature vector at time t, where df eats = 512 is the depth
of the feature level of the network (see Figure 2.10), and it is constructed as shown in
figure 5.12. A running average is performend at each training step in order to update the
prototypes per each class, i.e.:

Γt =
Γt−1 · kt−1 +n ·

∑n
i=1 pi

kt
(5.6)

where kt = kt−1 × n is the number of feature vectors considered to build the prototype at
time t, n is the number of points per that class at time t, k0 = 0 and Γ0 = 0.

Figure 5.12: Schematic representation of prototypes construction. In the example each
color is associated with a different class and n = 3 for the yellow class vectors.

Note that in order to understand which feature vectors belong to which ground truth
class, the original labels have been downsampled according to the downsampling method
used for the features (see Section 2.4). In this way the assignment is univoque. Moreover,
the prototypes are built dynamically because each time step more features of the same
class are produced and the measurement is adjusted accordingly.

Hence, we compute euclidean distance between the features and the respective prototypes.
This distance is then added to the standard cross-entropy loss function, weighted by a
factor γ , as it is expressed in the following equation:

LΓ = Lmicro +γ · Lproto , Lproto = ||Γ −φ|| (5.7)

where φt is a (1,df eats) feature vector at time t.
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5.3 FAIRNESS

The last concept proposed in this work is the fairness. This term comes from the resources
allocation theory and its aim is to give a penalty to the most diffused classes with respect to
the rearest ones (Figure 5.13). In mathematical terms the fairness we used can be expressed
as:

F =
M∑
k=1

Fk , Fk =

(∑n
i=1 pi

)2
n ·

∑n
i=1 p

2
i

(5.8)

where pi is the prediction of the i-th point, and M is the number of macro-classes. With
this formula, known in information theory as the Jain’s fairness index [33], a balancement
is introduced inside each cluster.

We can refer to fairness as a regularization term that helps in preserving an homogeneity
among the classes in the same macro-class. This term is added to the loss function as
expressed in the following equation:

LF = Lmicro +γ · (1−F ) (5.9)

where the term included is (1 −F ) because the loss function is minimized in the training
process.

Figure 5.13: The fairness concept in visual terms.
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6Results

In this chapter the results obtained with the proposed learning solutions are reported. Such data are
discussed and compared with the state-of-the-art standard framework.

∗ ∗ ∗

The following sections provide the results given by the application of the methods ex-
plained in the previous chapter. First, some quantitative results are given and each set of
methods is broadly discussed. Then, some qualitative examples are presented.

6.1 IMPLEMENTATION DETAILS

The dataset has been downloaded from the original online repository of Behley et al.1.
Besides, the repository contains many folders addressed to different tasks and only the
parts related to semantic segmentation have been downloaded, i.e., the KITTI Odometry
Benchmark Velodyne point clouds, the KITTI Odometry Benchmark calibration data and
the SemanticKITTI label data.

As for the architecture, it has been downloaded from the GitHub repository of the original
paper from Hu et al.2. The code is entirely written in Python 3.6 using TensorFlow 1.15
as a framework for training the network. The training has been performed on GPUs,
particularly on NVIDIA GeForce RTX 3090 and NVIDIA TITAN RTX devices.

As anticipated, the trainings have been performed using batch size b = 4 and validation
batch size bV = 4, whilst the original paper used b = 6 and bV = 20. The choice was made
for memory occupation constraints. However, in the end, the most promising settings
with batch size b = 4 have been also tested with the original setting to compare our results
with the state of the art.

If not stated otherwise, the trainings have been performed for 100 epochs in general, as
for the original paper. An exception was made for the curriculum learning trainings with
a pretraining stage (Section 5.1.2), where the coarse training was performed on N = 50
epochs, whilst the fine tuning on other N = 100 epochs for a total of 150 epochs. Another

1http://semantic-kitti.org/dataset.html
2https://github.com/qingyonghu/RandLA-Net

http://semantic-kitti.org/dataset.html
https://github.com/qingyonghu/RandLA-Net
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exception was made for the feature level, where the training was performed only on 40
epochs.

6.2 CURRICULUM RESULTS

In this section the results of the Curriculum Learning methods application, presented in
Section 5.1, are reported.

6.2.1 Batch organization

The first set of proposed trials concern the organization of batches in a meaningful way,
as explained in 5.1.1. Table 6.1 reports the quantitative results obtained from the proposed
methods, while Figure 6.1 shows the temporal development of the accuracy and mIoU
metrics.

These results show that the random choice of batches remains the best way to select the
samples. In fact, adopting the curriculum approach decreases performance both in the
mIoU and accuracy. In addition, the selection based on the number of points is even worse
than selecting samples according to the mIoU.
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Figure 6.1: Some results of the witty batch organization experiments.

6.2.2 Coarse-to-Fine approaches

This section presents another set of trials, explained in Section 5.1.2, where the samples are
selected at random, while the network is trained in a curricular way. The results obtained
here are reported in Table 6.2 and Figure 6.3a.
The difference with the standard training scheme is minimal, an improvement can be seen
when using these methods with a larger batch size (see Section 6.5.1). The pretraining of
the network is useful for performing a coarse separation of the involved classes in order
to have a better separation at a second stage (C2F stage 2) or an initial label to couple with
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Trial name mIoU accuracy epoch
Original 52.91 89.25 89

total points 38.84 83.95 82
CVPR random 49.16 86.23 86

mIoU 47.65 85.92 89
mIoU random 48.94 84.87 99

mIoU GGBB 49.61 87.43 96
total points GGBB 40.83 83.05 87

Table 6.1: Quantitative results of the curriculum witty batch organization.

data (C2F argmax and C2F softmax) while feeding the network in the second stage. This
result can be clearly shown in Figure 6.3.
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Figure 6.2: Some results of coarse to fine curriculum training schemes. The curves have
been smoothed with a Savitzky-Golay filter [36] with window size w = 9 and polynomial
degree p = 2.

6.3 CONTRASTIVE RESULTS

In this section the results of the Contrastive Learning methods application, presented in
Section 5.2, are reported.

6.3.1 Alternative loss functions

The results obtained with different loss functions with respect to the standard cross-
entropy (introduced in Section 5.2) are grouped in this paragraph. The implementation of
the focal loss is here done by choosing αt = 4 and γ = 2, as suggested in the original paper
[21]. Instead, the presented version of the triplet loss is built by choosing λ = 0.1 and µ = 1.
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Trial name accuracy mIoU epoch
Original 89.25 52.91 89

C2F dense layer 89.62 52.65 77
C2F stage 2 89.07 52.44 68

C2F argmax 88.93 52.33 97
C2F softmax 88.94 52.71 86

C2F groundtruth 89.22 52.41 40

C2F stage 1 96.43 85.80 45

Table 6.2: Quantitative results of coarse-to-fine curriculum training schemes. Note that
the last row (C2F stage 1) presents huge values of accuracy and mIoU since it refers to
macro-classes only.
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Figure 6.3: Confusion matrix on the macro-classes of the original setting compared with
the one obtained from the first stage coarse-to-fine training.

From Table 6.3 and Figure 6.4b it is possible to notice that there is not an improvement in
the mIoU. Several tentatives have been performed by changing the parameter values, but
they have very similar results, hence they are not reported here.

Instead, focal loss and cross-entropy loss with square root weights bring an improvement in
terms of accuracy. On the other hand, the improvement is modest, as the point accuracy
represents a measure of correctness, weaker than the mIoU for semantic segmentation. In
fact, classes with the major number of points are recognized in most cases, while classes
with few points are misclassified with high probability, but holding only a few points does
not affect much the final result of accuracy. On the other hand, their misclassification
affects the mIoU in a greater percentage and, in fact, it is lower than in the original case.
Hence, these losses overfit the data and do not outperform the original one.
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Figure 6.4: Some results of the experiments with different standard loss functions and
weighting schemes.

Trial name mIoU accuracy epoch
Original 52.91 89.25 89

Focal loss 51.05 90.08 98
Triplet loss cross entropy 32.06 75.49 34

Dice loss 11.43 60.20 45
Cross-entropy square root weights 52.27 90.14 96

Table 6.3: Quantitative results of the experiments with different standard loss functions
and weighting schemes.

6.3.2 Hierarchical loss

In this section, a discussion of the results of the hierarchical loss, introduced in Section
5.2.1.5, is presented as a standalone. In fact, this loss function has proved to be very effec-
tive both in terms of accuracy and mIoU and to outperform the state of the art whenever
an accurate choice of the γ parameter (see Equation 5.5) is performed.
Figure 6.5 and Table 6.4 show that if the macro-classes are weighted γ = 0.05 times the
micro-classes, the best configuration is achieved and there is a substantial gain of 1.31% in
mIoU with respect to the standard approach. The accuracy is also outperformed.

The confusion matrix of Figure 6.6 shows that following this approach, the micro-classees
belonging to different macro-classes have a lower probability with respect to the original
setting of being confused with micro-classes that belong to different macro-classes.

6.3.3 Feature level

The loss function that includes the euclidean distance measurement on the prototypes
(Equation 5.7) has been tested only with parameter γ = 0.1, obtaining an overall accu-
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Figure 6.5: Some results of the experiments with hierarchical loss and different values
of parameter γ . The curves have been smoothed with a Savitzky-Golay filter [36] with
window size w = 9 and polynomial degree p = 2.

Trial name accuracy mIoU epoch
Original 89.25 52.91 89

γ = 0.010 89.43 53.73 95
γ = 0.001 89.15 51.46 72
γ = 0.100 89.05 52.91 73
γ = 0.002 88.97 52.23 62
γ = 0.050 89.54 54.22 78
γ = 0.005 89.39 52.90 98

Table 6.4: Quantitative results of the trials with hierarchical loss for different values of
parameter γ .

racy value of 88.18%. Only partial results have been obtained here and deeper analyses
have to be conducted. In fact, only 40 epochs have been performed due to resource con-
traints and time limits.
However, the mIoU and accuracy curves (Figure 6.7) show that 40 epochs are not suffi-
cient and the model is still improving its performance. In fact, the best accuracy and mIoU
values for the model have been obtained at the last epoch (i.e., epoch 40). Moreover, the
curves present a regular increasing behaviour, showing that the prototypical loss, acting at
feature level, adds a lot of regularization with respect to the standard one.

6.4 FAIRNESS RESULTS

The results of the trials where a fairness term is added to the standard cross-entropy are
reported in this section. In particular, several values for γ parameter (Equation 5.9) are
tried. Table 6.6 and figure 6.8 report these results. Notice that by increasing the weight
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Figure 6.6: Confusion matrix on the macro-classes of the original setting compared with
the one obtained from the training with hierarchical loss with parameter γ = 0.05.
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Figure 6.7: Results of the experiments with prototypical loss with γ = 0.1. The curves have
been smoothed with a Savitzky-Golay filter [36] with window size w = 9 and polynomial
degree p = 2.

of the γ parameter, the results improve, reaching values even better than the original
state-of- the-art configuration. However, the convergence is a little slower.

The main result that is achieved with this method, on the other hand, is actually a fairness
among classes. Figure 6.9 shows the mIoU per class compared to the original baseline ap-
proach. It is clearly visible that the problem of imbalance among classes (dealt in Chapter
4) persists, but it is reasonably compensated for by our introduced term F .
This result is confirmed by the standard deviation in the mIoU measurement, as it shows
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Original 89.3 52.9 92.9 12.7 28.4 70.0 35.6 52.3 69.0 0.0 91.2 37.1 76.0 1.5 87.6 43.7 85.0 60.2 73.7 51.6 36.9 89
prototypes 88.2 48.5 91.5 5.9 25.0 36.1 34.4 41.1 66.0 0.0 89.6 35.4 74.5 0.3 86.0 41.6 83.7 54.2 74.4 48.4 33.1 40

Table 6.5: Quantitative results of the contrastive loss at the feature level.

a reasonable decrease from σ = 29.0 to σ = 28.2. In addition, we computed also the MSE
and the entropy H , as:

H =
M∑
i=1

pi · log2
1
pi

(6.1)

where M is the number of classes and pi is the mIoU value obtained for that class. All
these measurements, which provide another proof of the effectiveness of our methods and
are reported in Table 6.6.
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Figure 6.8: Some results of the experiments with cross-entropy loss with fairness and dif-
ferent values of parameter γ . The curves have been smoothed with a Savitzky-Golay filter
[36] with window size w = 9 and polynomial degree p = 2.

6.5 FURTHER EXPERIMENTS

Further experiments have been led by changing the batch sizes b,bV to the original dimen-
sions and by testing the promising methods jointly. Instead, the methods that gave poor
results with b = bV = 4 have been neglected. The results of these tests are presented in the
following sections.
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Trial name accuracy mIoU epoch σ MSE entropy
Original 89.25 52.91 89 29.0 3644.2 6.46
γ = 0.1 89.05 51.17 95 28.7 3591.5 6.55
γ = 1 89.31 51.81 55 28.2 3601.4 6.61

γ = 10 89.57 53.22 79 28.2 3714.7 6.43

Table 6.6: Quantitative results of cross-entropy loss with fairness for different values of γ
parameter.

Figure 6.9: The mIoU per class for the fairness with respect to the standard cross-entropy.
Parameters are set to b = 6, bV = 20, γ = 10. Notice that there is a rise in the classes with
low values, e.g., bicycle, parking.

6.5.1 Tests with original batch size

Experiments have been conducted with the original batch size b = 6 and the original val-
idation batch size bV = 20, to compare our approaches with the state of the art. Table A.1
reports the tests led before, while Table A.3 the ones with the increased batch dimension.
The per class mIoU is reported here to underline the results achieved with respect to each
class.
We can observe that the behavior of these results is similar, and the performances are
slightly improved. Note that our results with the standard configuration achieve little
worse performance with respect to what is declared in the original paper [15].
The main result here is achieved with coarse-to-fine that gains in performance while in-
creasing the batch dimension. Figure 6.10 and Table A.3 report these results.
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Figure 6.10: Some results of coarse-to-fine curriculum training schemes with batch size
b = 6 and validation batch size bV = 20. The curves have been smoothed with a Savitzky-
Golay filter [36] with window size w = 9 and polynomial degree p = 2.

Trial name accuracy mIoU epoch
Original 89.59 53.36 93

fairness γ = 0.1 89.68 53.00 68
fairness γ = 1 89.73 53.37 63

fairness γ = 10 89.71 54.40 94
hierarchy γ = 0.01 89.79 54.20 37

hierarchy γ = 0.001 89.44 52.71 63
hierarchy γ = 0.05 89.60 53.79 89

hierarchy γ = 0.005 89.38 52.66 92
C2F dense layer 89.63 53.00 96

C2F stage 2 89.78 53.81 56
C2F argmax 88.81 51.07 42
C2F softmax 89.54 52.86 99

C2F groundtruth 89.85 53.60 87

Table 6.7: Results of tests with b = 6 and bV = 20.

6.5.2 Joint experiments

The final set of experiments has been conducted by testing some of the methods giving the
best performances, jointly. In particular, the fairness index and the hierarchical loss have
been mixed, and experiments have been led to training the network in stages. The results
are reported in Table A.2.

Notice that all these experiments bring an improvement with respect to the original train-
ing scheme. However, some combinations are not very effective, while other combinations
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improve even the results on the singular components. The best combination is obtained
while mixing the three methods in such a way that the loss function results:

L = Lmicro +γ1 · Lmacro +γ2 · (1−F ) (6.2)

where γ1 = 0.05, γ2 = 10 and the model is trained for 50 epochs on the coarse labels and
for 100 on the fine labels. This configuration shows an remarkable improvement of 1.5%
mIoU with respect to the standard model trained with our hardware.
On the other hand, the number of configurations tested in this work is limited and further
improvements can be possibly achieved with finer tuning of the parameters involved.

Trial name accuracy mIoU
Original 89.25 52.91

fairness γ = 10 + C2F 87.96 53.00
hierarchy γ = 0.01 + fairness γ = 10 89.86 53.87

hierarchy γ = 0.01 + C2F 89.60 52.95
hierarchy γ = 0.05 + fairness γ = 10 89.56 53.99

hierarchy γ = 0.05 + C2F 89.53 54.12
hierarchy γ = 0.05 + fairness γ = 10 + C2F 89.69 54.34

Table 6.8: Results of joint tests with b = 4, bV = 4.

6.6 FINAL DISCUSSION

Overall, the results underline an improvement in the performance of the network. The
experiments have proved to outperform the state of the art not only in terms of total mIoU
and accuracy, but also as regards the speed of convergence to the optimal value. In fact, if
we restrict our measurements to a few epochs only, we can notice that satisfactory results
are achieved by our methods.

The hierarchical learning applied to the loss function has shown to be efficient in achieving
good class separation at a macro level (Figure 6.6) as well as at a micro level. Similarly, the
curricular approach that provides training in stages has been proven to improve perfor-
mance by separating classes into subsequent steps. Finally, fairness results, as expected, in
a more evenly distributed distribution of the learnt classes.

6.6.1 Qualitative Results

In this section, the qualitative results of some of the methods tested are presented. In par-
ticular, Figure 6.12 shows some example point clouds labeled according to our methods
(hierarchical loss with γ = 0.05, fairness loss with γ = 10, Coarse-to-Fine), compared to
the baseline approach and the ground truth.
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Figure 6.11: Results of the best experiments with original batch size. The curves have been
smoothed with a Savitzky-Golay filter [36] with window size w = 9 and polynomial degree
p = 2.

The specification in terms of number of points and overall performance for each of the
selected point clouds is described in Table 6.9. Note that our methods obtain better values
for the MSE and a lower percentage of wrongly classified points in each of them, with
respect to vanilla training. Note that in the computation of such values, the unlabeled class
has not been taken into consideration. The most common misclassifications can be seen in
the table and are highlighted in the figure.

Figure 6.13 and Table 6.10 are instead referred to by the labelling according to the macro-
classes. In that, we can see an accordance with the confusion matrix of Figure 6.3 as
regards the coarse-to-fine approach and Figure 6.6 for the hierarchical loss.

The qualitative results point out the effectiveness of our methods. Specifically, we can no-
tice some particulars marked by red circles in the examples (e.g., the building in Figure
6.12c). Note that the results obtained with the fairness model are noisier than the other
methods, but they are able to recognize classes that are less frequent, like class people, rep-
resented by the blue points in Figure 6.13b. The hierarchical approach, from a qualitative
point of view, obtains results similar to the baseline, but improved.
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08x000000 gt 6567 1503 20 0 0 0 160 0 0 12024 84 15677 0 2120 518 23523 2830 22066 311 706
vanilla 0 2548 0 0 0 172 0 0 0 19069 2861 7026 0 791 3596 32834 1621 19428 368 0 44765 25.09%

fairness 0 1997 0 21 0 208 0 0 1 12571 55 18727 40 1618 925 24856 4964 20498 1005 623 11291 6.66%
hierarchical 0 1845 0 2 1 394 62 0 0 13104 104 20098 31 1275 614 25088 4823 18846 1047 775 14933 8.80%

08x000090 gt 11015 1427 50 0 0 0 64 1038 0 12422 81 10822 1 3386 198 13501 1722 25880 389 458
vanilla 0 3068 0 6 0 0 0 883 0 11760 835 9391 495 3989 3377 17732 2526 27596 737 59 16537 10.75%

fairness 0 2661 0 0 0 1 15 1612 0 16690 281 9815 18 2516 2440 14910 1758 28740 958 39 15805 10.27%
hierarchical 0 2282 1 0 0 30 4 1237 0 14725 48 9670 0 2641 3060 14427 2115 31120 1015 79 15853 10.30%

08x001010 gt 2660 1746 20 116 0 977 0 0 0 16999 5141 7530 0 3639 18 33835 1004 16327 296 6
vanilla 0 2548 0 0 0 172 0 0 0 19069 2861 7026 0 791 3596 32834 1621 19428 368 0 17820 10.01%

fairness 0 2572 0 0 8 698 0 0 0 20888 1961 7469 26 1544 880 33749 1054 19077 388 0 14346 8.06%
hierarchical 0 2263 0 0 8 585 0 0 0 17177 2868 9400 30 3074 1525 32160 1763 18976 463 22 12742 7.16%

Table 6.9: Labelling specifications of point clouds 08x000000, 08x000090 and
08x001010. The table reports the true labels and labels per each method.

unlabeled cars people roads vegetations MSE % of wrong points
08x000000 gt 6567 1523 160 49851 30008

vanilla 0 2720 0 48384 39210 12026 7.00%
fairness 0 2226 1 51891 33991 6885 4.06%

hierarchical 0 2242 62 52183 33622 6763 3.99%
08x000090 gt 11015 1477 1102 49206 19654

vanilla 0 3074 883 50077 28420 11453 7.44%
fairness 0 2662 1627 55544 22621 11015 7.16%

hierarchical 0 2313 1241 55563 23337 11015 7.16%
08x001010 gt 2660 2859 0 45997 38798

vanilla 0 2720 0 48384 39210 2938 1.65%
fairness 0 3278 0 49421 37615 5026 2.82%

hierarchical 0 2856 0 48451 39007 2666 1.50%

Table 6.10: Macro classes labelling specifications of point clouds 08x000000, 08x000090,
08x001010.
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(a) 08x000000.

(b) 08x000090.

(c) 08x001010.

Figure 6.12: Qualitative results of the best experiments compared to the baseline and
grountruth with examples 08x000090, 08x001010, 08x000000.
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(a) 08x000000.

(b) 08x000090.

(c) 08x001010.

Figure 6.13: Qualitative results of the best experiments compared to the baseline and
grountruth with examples 08x000090, 08x001010, 08x000000.
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7Conclusions

In this chapter the overall work is summarized while final conclusions and remarks are drawn.
Finally, a perspective towards future works is presented.

∗ ∗ ∗

The task of LiDAR semantic segmentation is an actual problem that must be addressed
in the development of future applications such as self-driving cars. The current GPU
capabilities are a limited resource for providing this mean, and this must be considered
while approaching the problem. In this thesis the task has been developed by focusing
on learning strategies, in order to leverage state-of-the-art architectures while improving
learning performance. The goal is accomplished by using methods that aim at separating
different classes and gradually learning concepts by progressively refining the learned
knowledge.

Preliminary analyses led on the SemanticKITTI [2] dataset have pointed out the overall
imbalance of classes and a suggestion of a witty subdivision of them into macro categories.
Such subdivision has been obtained through spectral clustering algorithm and is based
on the mIoU metric of a general supervised model. These results have been exploited to
tackle LiDAR semantic segmentation task by means of a well-known point-based archi-
tecture, RandLA-Net [15].

The first idea applied was to adopt a curriculum learning approach based on this macro-
classes subdivision. Therefore, methods based on a hierarchical loss function have been
investigated, as well as different training schemes that involve a pretraining of the network
on the macro-classes to refine the knowledge of the whole set. These methods have proven
to be very effective as they provide an improved overall distinction between categories
with respect to the standard one.

In addition, the class imbalance has led us to include homogeneity terms in the loss to have
a more uniform accuracies with respect to the various classes. In this, the fairness index
has played its role, showing an improvement on the least frequent classes while lowering
the standard deviation measure in the mIoU.



7. CONCLUSIONS

7.1 FUTURE WORKS

The perspective of improvement is very broad, especially considering working in the
feature space. For future work, the purpose is to develop the prototypical representation
by trying different application methods. For example, prototypes are now built starting
from the very first epoch, where the weights are not stable yet. The idea is to start their
construction later, or progressively weight more the new incoming features in the process
of prototype construction.

Progressive training can be accomplished even when using other methods. For example,
in the hierarchical loss, the parameters can decrease as the learning rate increases, and
similarly, the ground truth labels or the predictions can be included progressively with the
training time. Clearly, these solutions can be integrated and tested jointly.

Overall, this thesis’s contribution can be considered as a starting point for wider work. In
fact, the methods applied here can even be tested on diverse architectures and using differ-
ent datasets for LiDAR semantic segmentation, given that our methods are not dataset or
architecture dependent. In particular, the idea is to use synthetic data in the training pro-
cess, which requires adopting new techniques and processes to ease their integration with
real ones. Our methods are finally suitable even for tasks different from LiDAR semantic
segmentation, and this is another perspective that must be kept into consideration.
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AAppendix

In this chapter additional data concerning the analyses led on the dataset are reported.

∗ ∗ ∗

Figure A.1: Distance distribution per each class in test sequence.



A. APPENDIX

Figure A.2: Height distribution per each class in test sequence.

Figures A.1 and A.2 report the distances and heights per class in the test set. No further
details are provided here since the plots have been discussed before in Chapter 4. Figure
A.3 represents an extended version of Figure 4.4 where the predictions are subdivided per
class. Finally, Tables A.1, A.3 and A.2 report the overall results obtained with our methods
that gave significant performance in terms of mIoU and accuracy.
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Figure A.3: Distance distribution of the correctly and wrongly classified points.
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Original 52.91 92.94 12.67 28.43 70.02 35.62 52.31 69.03 0.00 91.15 37.06 75.96 1.45 87.62 43.68 84.95 60.23 73.67 51.56 36.93
hierarchical γ = 0.01 53.73 93.20 10.67 33.16 73.76 41.64 50.70 70.03 0.00 91.35 39.46 76.68 1.53 87.63 41.38 84.70 59.64 75.00 52.07 38.35

hierarchical γ = 0.001 51.46 92.50 11.79 33.51 58.98 35.33 49.01 63.16 0.00 90.84 38.46 75.68 0.52 87.02 39.62 84.33 57.99 75.26 49.52 34.20
hierarchical γ = 0.1 52.91 92.99 13.26 29.35 75.41 37.66 49.41 63.86 0.00 91.12 40.49 76.17 0.14 87.81 42.22 84.78 59.15 74.99 50.97 35.42

hierarchical γ = 0.002 52.23 92.46 13.22 26.35 71.93 39.04 48.81 62.51 0.00 91.06 39.39 75.40 1.48 86.81 40.10 84.19 58.43 72.69 51.29 37.18
hierarchical γ = 0.05 54.22 93.48 14.67 36.07 72.95 41.95 49.46 64.21 0.00 91.33 39.52 76.02 1.93 88.22 45.52 85.67 62.32 73.99 51.72 41.12

hierarchical γ = 0.005 52.90 92.89 13.15 31.00 69.39 34.02 49.53 69.12 0.00 91.44 39.06 76.61 1.53 87.59 41.94 85.00 59.26 74.39 50.94 38.30
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Original 52.91 92.94 12.67 28.43 70.02 35.62 52.31 69.03 0.00 91.15 37.06 75.96 1.45 87.62 43.68 84.95 60.23 73.67 51.56 36.93
fairness γ = 0.1 51.17 92.41 11.81 26.78 61.63 31.65 48.91 61.19 0.00 91.48 37.82 76.00 0.26 87.15 41.23 84.57 58.90 73.54 50.03 36.92

fairness γ = 1 51.81 92.77 13.60 25.43 65.43 39.45 46.55 60.77 0.00 91.27 38.73 75.74 1.15 87.14 42.65 84.73 58.27 74.59 49.38 36.84
fairness γ = 10 53.22 92.97 14.79 29.40 72.09 34.44 54.22 64.60 0.00 91.31 40.56 76.39 0.38 87.60 43.80 85.03 60.93 73.46 51.41 37.75
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Original 52.91 92.94 12.67 28.43 70.02 35.62 52.31 69.03 0.00 91.15 37.06 75.96 1.45 87.62 43.68 84.95 60.23 73.67 51.56 36.93
C2F dense layer 52.65 93.31 4.87 29.78 76.93 41.49 48.54 67.88 0.00 91.50 37.65 76.26 1.47 87.89 42.79 84.58 59.48 73.82 44.90 37.17

C2F stage 2 52.44 92.52 11.23 33.35 61.19 39.29 47.31 66.22 0.00 90.75 37.67 75.25 2.97 87.68 42.78 84.47 59.47 73.46 50.61 40.07
C2F argmax 52.33 92.73 16.13 30.00 70.20 38.35 45.30 64.60 0.00 91.07 38.98 76.04 0.60 87.21 41.47 83.94 59.15 72.90 51.43 34.19
C2F softmax 52.71 92.91 14.84 34.89 60.23 38.89 50.91 70.15 0.00 91.48 40.68 76.31 0.93 86.77 39.36 83.77 60.92 72.98 50.41 35.04

C2F groundtruth 52.41 92.59 17.09 33.01 69.46 35.79 49.33 63.93 0.00 90.66 37.10 75.10 3.59 86.77 39.65 84.35 58.74 73.62 50.37 34.55

Table A.1: Overall quantitative results on per class mIoU using b = 4, bV = 4.
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Original 52.91 92.94 12.67 28.43 70.02 35.62 52.31 69.03 0.00 91.15 37.06 75.96 1.45 87.62 43.68 84.95 60.23 73.67 51.56 36.93
fairness γ = 10 + C2F 53.00 93.3 0 11.31 29.96 76.27 40.53 49.24 55.34 0.00 91.49 39.06 76.75 1.59 87.63 45.36 85.64 60.30 73.90 52.59 36.80

hierarchy γ = 0.01 + fairness γ = 10 53.87 93.23 16.33 32.23 66.55 41.18 52.92 67.67 0.00 91.79 39.91 76.65 0.45 87.78 43.96 85.41 62.13 73.26 52.95 39.09
hierarchy γ = 0.01 + C2F 52.95 93.18 15.51 27.69 72.37 40.62 44.61 67.77 0.00 91.54 39.36 76.83 0.68 87.78 42.24 84.99 59.62 75.51 51.16 34.63

hierarchy γ = 0.05 + fairness γ = 10 53.99 92.83 17.72 30.83 73.59 38.74 49.96 69.87 0.00 91.64 42.39 76.92 3.29 87.33 44.12 85.15 58.52 73.89 51.15 37.91
hierarchy γ = 0.01 + fairness γ = 10 + C2F 54.12 93.12 15.42 34.01 63.76 40.66 53.83 66.63 0.00 91.54 40.78 77.11 1.34 89.16 48.93 85.47 61.58 73.45 52.48 39.06
hierarchy γ = 0.05 + fairness γ = 10 + C2F 54.34 93.52 14.30 32.01 73.34 40.46 51.26 66.84 0.00 91.61 41.73 76.18 1.27 88.92 47.89 84.24 62.85 73.92 52.39 39.77

Table A.2: Overall quantitative results on per class mIoU using b = 4, bV = 4.

90



Trial name m
Io

U

ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

ro
ad

pa
rk

in
g

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
ti

on

tr
un

k

te
rr

ai
n

po
le

tr
af

fic
-s

ig
n

Original 53.36 93.37 13.42 30.30 69.89 39.45 50.55 67.24 0.00 91.81 41.03 76.96 0.97 87.73 43.73 84.90 60.35 73.38 50.88 37.92
fairness γ = 0.1 53.00 93.20 14.51 28.79 64.69 47.43 46.9 62.73 0.00 91.39 39.29 76.75 1.02 87.25 43.41 85.71 62.17 74.41 50.56 36.81

fairness γ = 1 53.37 93.48 16.82 31.08 64.02 43.65 46.84 65.23 0.00 91.61 39.43 76.76 3.70 87.72 43.5 85.37 59.03 74.28 51.81 39.66
fairness γ = 10 54.40 93.47 20.83 33.60 61.46 43.94 52.45 75.68 0.00 91.50 41.02 76.62 1.66 87.73 44.36 85.36 59.70 74.40 50.96 38.95
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Original 53.36 93.37 13.42 30.30 69.89 39.45 50.55 67.24 0.00 91.81 41.03 76.96 0.97 87.73 43.73 84.90 60.35 73.38 50.88 37.92
hierarchical γ = 0.01 54.20 93.50 14.84 32.85 69.56 43.25 52.14 67.43 0.00 91.8 0 40.92 77.07 5.09 87.68 43.03 85.4 61.19 74.52 50.97 38.63

hierarchical γ = 0.001 52.71 93.43 13.49 28.14 57.91 48.35 49.40 64.41 0.00 91.49 40.11 76.73 0.53 88.25 42.09 84.15 60.52 73.78 51.46 37.34
hierarchical γ = 0.05 53.79 93.20 16.54 25.59 71.80 44.32 49.42 69.89 0.00 91.47 38.76 76.58 6.49 87.88 43.34 85.06 60.32 73.33 50.80 37.28

hierarchical γ = 0.005 52.66 93.42 17.34 30.14 54.68 43.11 49.53 64.95 0.00 91.68 41.37 77.2 1.41 86.86 41.19 84.46 60.69 74.17 50.29 37.96
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Original 53.36 93.37 13.42 30.3 69.89 39.45 50.55 67.24 0.00 91.81 41.03 76.96 0.97 87.73 43.73 84.9 60.35 73.38 50.88 37.92
C2F dense layer 53.00 93.30 11.31 29.96 76.27 40.53 49.24 55.34 0.00 91.49 39.06 76.75 1.59 87.63 45.36 85.64 60.30 73.90 52.59 36.80

C2F stage 2 53.81 93.78 17.20 34.36 62.16 43.85 50.35 68.32 0.00 91.30 41.83 76.75 1.13 87.95 45.15 85.28 59.41 73.75 50.82 39.01
C2F argmax 51.07 92.36 6.18 27.82 74.95 35.60 43.82 58.79 0.00 90.54 40.95 75.18 0.35 85.81 39.71 83.87 55.98 73.85 48.13 36.37
C2F softmax 52.86 93.21 11.45 23.53 73.16 41.66 47.80 62.83 0.00 91.53 39.20 76.78 1.54 87.75 44.38 85.08 59.83 74.42 51.20 38.94

C2F groundtruth 53.60 93.57 14.02 25.54 74.85 47.47 48.69 63.29 0.00 91.85 42.28 77.15 0.43 87.50 42.72 85.56 59.51 74.62 51.19 38.22

Table A.3: Overall quantitative results on per class mIoU using b = 6, bV = 20.
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