

September 6, 2021

Academic Year 2020-2021

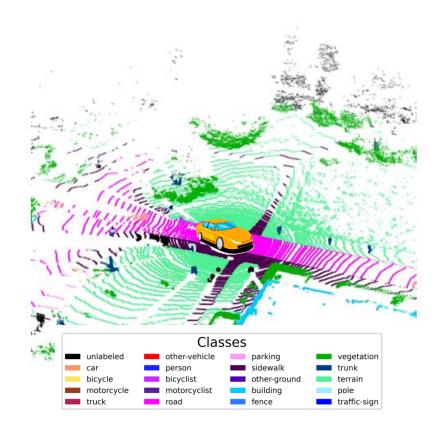
Curriculum and Contrastive Learning in LiDAR Semantic Segmentation

Candidate: <u>Elena Camuffo</u>

Supervisor: Simone Milani **Co-supervisor:** *Umberto Michieli*

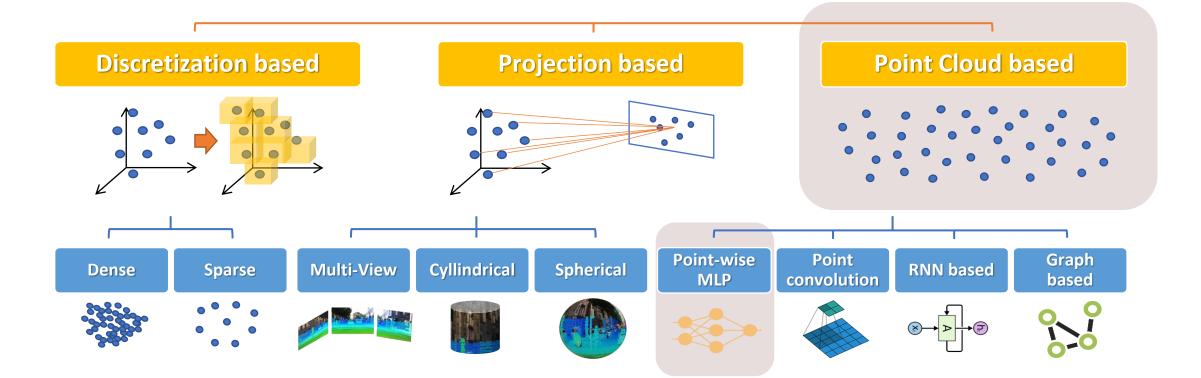
LiDAR Semantic Segmentation

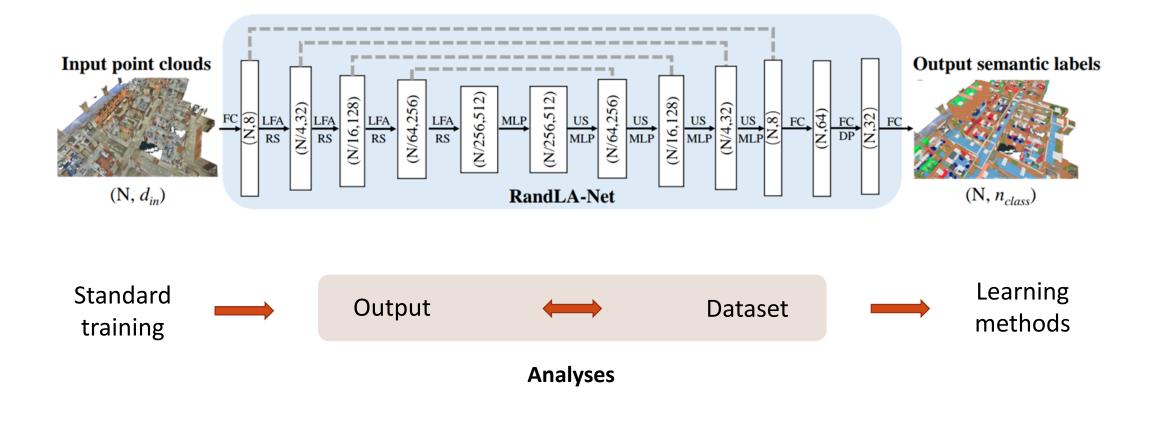
- Classification of 3D points for scene understanding.
- Many applications, e.g., autonomous driving, robotics, remote sensing.
 - > SemanticKITTI dataset [1]
- Deep Learning methods.
 - > RandLA-Net [2]



[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. "SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences". In International Conference on Computer Vision (ICCV), 2019.

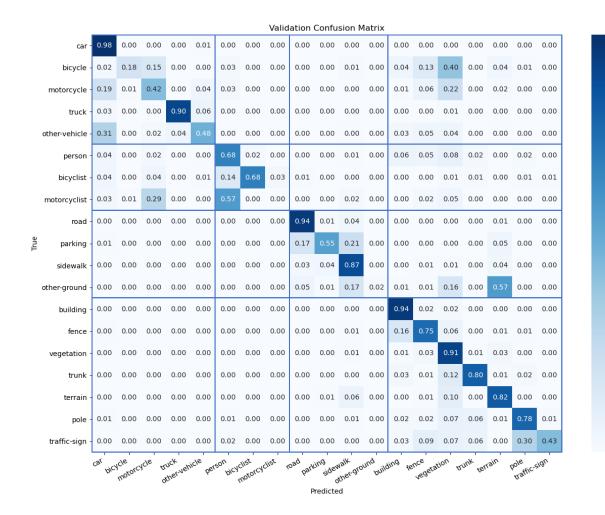
LiDAR SS methods taxonomy

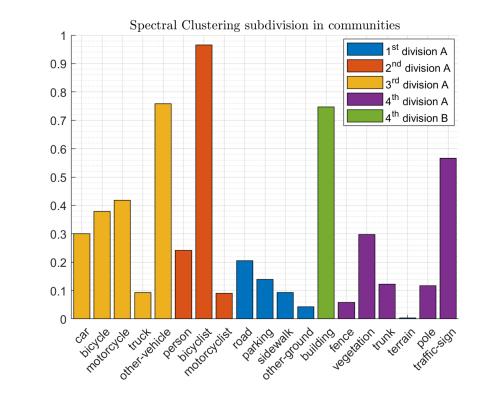




[2] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham. "RandLA-Net: efficient semantic segmentation of large-scale point clouds," in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 11 108–11 117.

• Output and dataset analyses





- 0.0

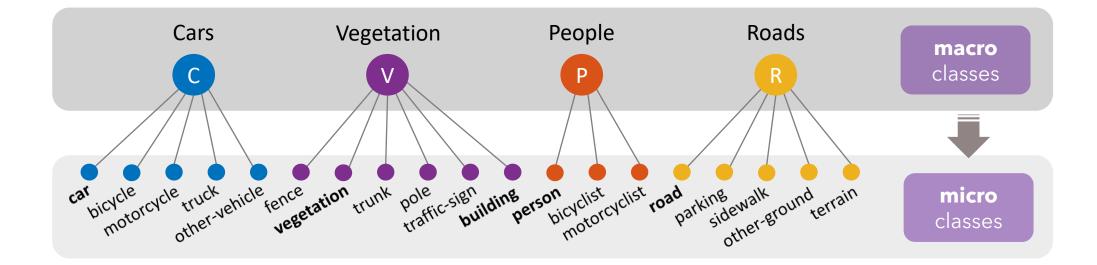
- 0.8

- 0.6

- 0.4

- 0.2

. Hierarchical Grouping

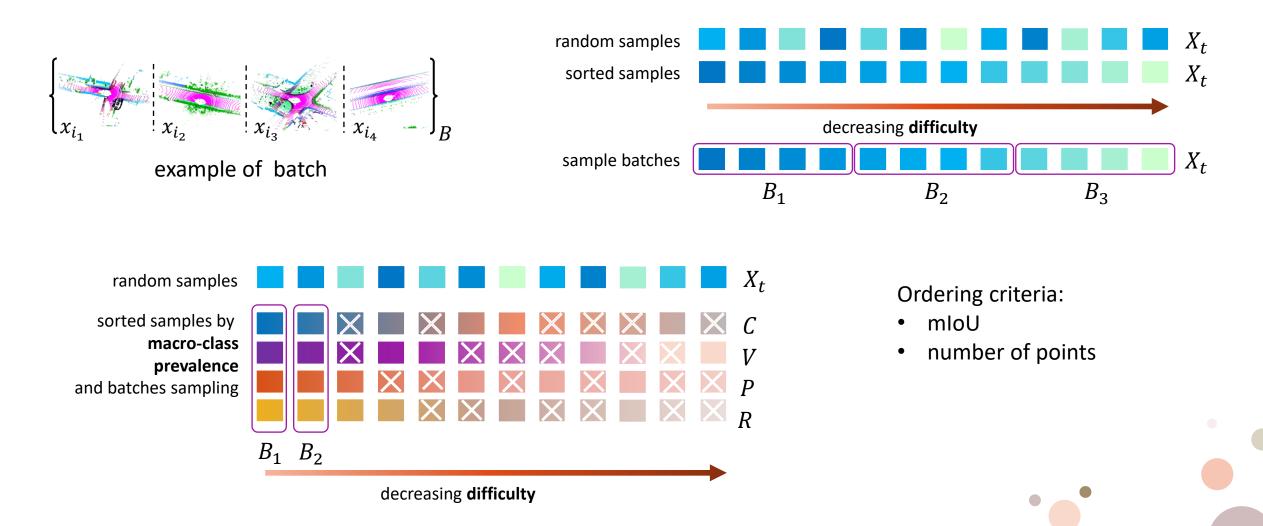


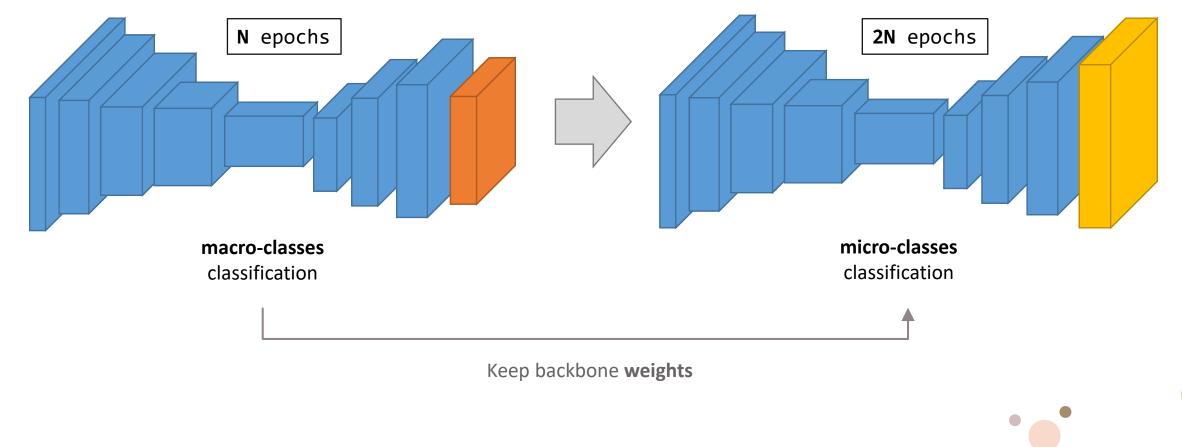
Hierarchical loss function:

 $\mathcal{L}_{hierarchy} = \mathcal{L}_{micro} + \gamma \cdot \mathcal{L}_{macro}$

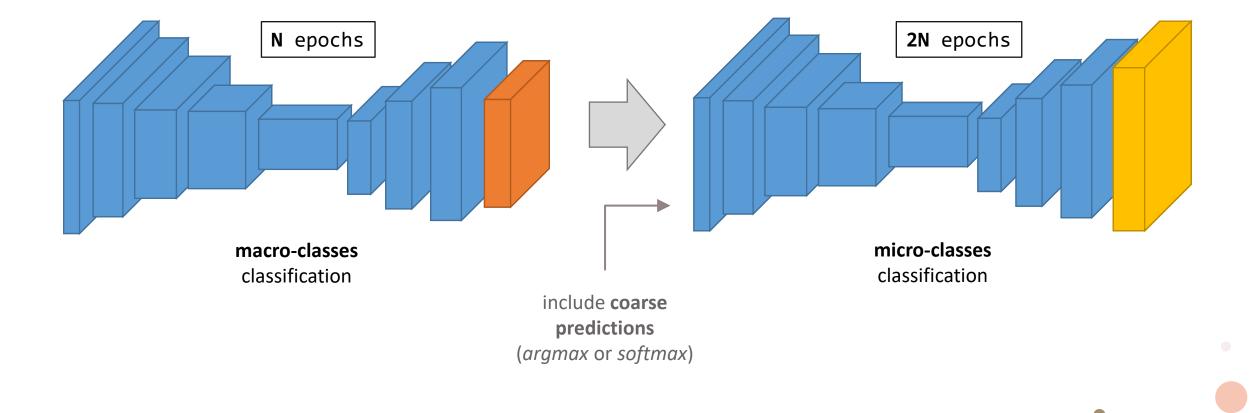
[3] Umberto Michieli, Edoardo Borsato, Luca Rossi, and Pietro Zanuttigh. Gmnet: Graph matching network for large scale part semantic segmentation in the wild. In European Conference on Computer Vision, pages 397–414. Springer, 2020.

Batch Organization





[4] Otilia Stretcu, Emmanouil Antonios Platanios, Tom Mitchell, and Barnabás Póczos. Coarse-to-fine curriculum learning. arXiv preprint arXiv:2106.04072, 2021.



[4] Otilia Stretcu, Emmanouil Antonios Platanios, Tom Mitchell, and Barnabás Póczos. Coarse-to-fine curriculum learning. arXiv preprint arXiv:2106.04072, 2021.

•

Contrastive Learning

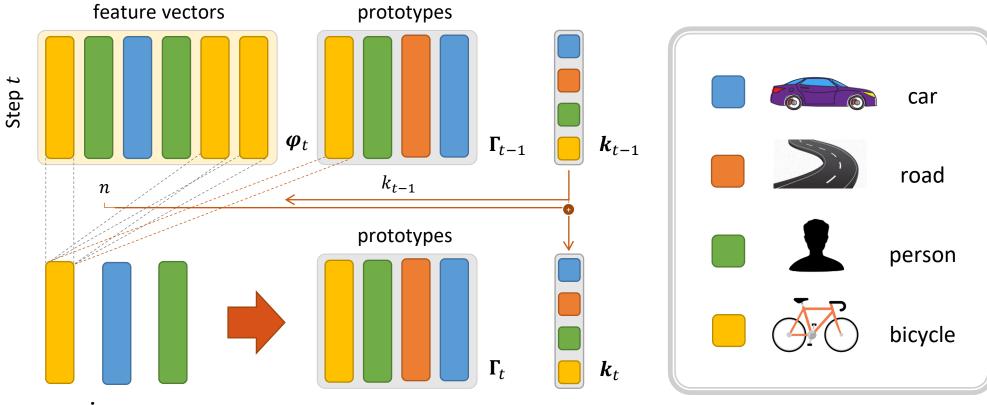
Negative x_n

Prototype x_n

Feature Space **Output Space** d_2 Anchor Label *bicycle* Positive x_p Prototype x_p Positive Negative d_1 Prediction Anchor x_a d_2 Feature x_a Anchor Learning Step Label *motorcycle* Positive

Negative

 d_1



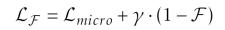
running average

•

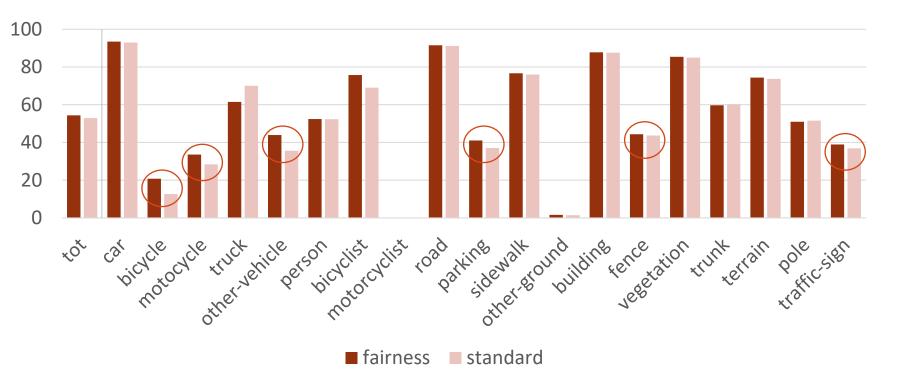
Fairness index:

 $\mathcal{F} = \sum_{k=1}^{M} \mathcal{F}_k, \quad \mathcal{F}_k = \frac{\left(\sum_{i=1}^{n} p_i\right)^2}{n \cdot \sum_{i=1}^{n} p_i^2}$

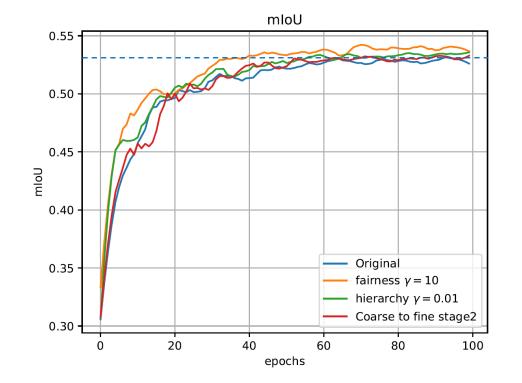
Fairness loss function:



• Quantitative Results



• Additional Results

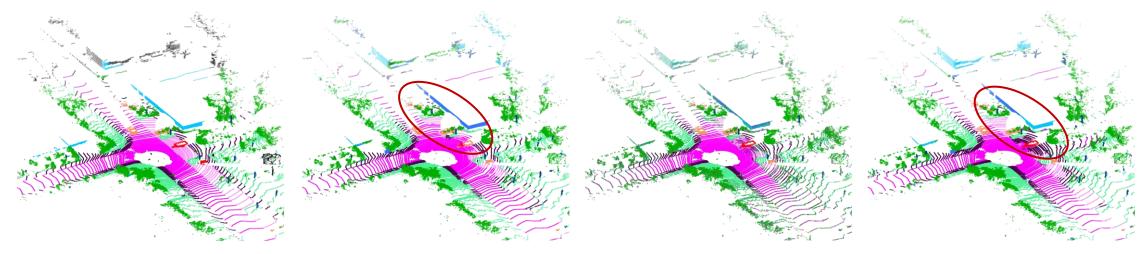


╺┨╼ ╬ Coarse-to-Fine

Trial name	accuracy	mIoU
Original	89.25	52.91
fairness $\gamma = 10 + C2F$	87.96	53.00
hierarchy $\gamma = 0.01 + \text{fairness } \gamma = 10$	89.86	53.87
hierarchy $\gamma = 0.01 + C2F$	89.60	52.95
hierarchy $\gamma = 0.05 + fairness \gamma = 10$	89.56	53.99
hierarchy $\gamma = 0.05 + C2F$	89.53	54.12
hierarchy $\gamma = 0.05 + \text{fairness } \gamma = 10 + \text{C2F}$	89.69	54.34

Tests with original batch size b = 6

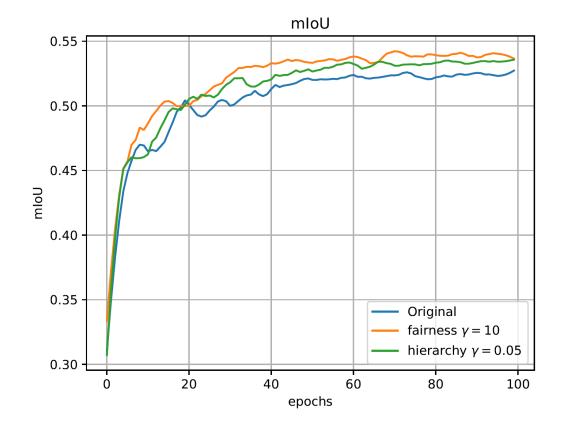
Ablation Study



Groundtruth

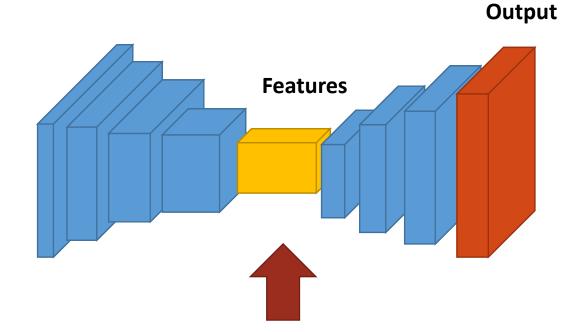
Fairness $\gamma = 10$

Hierarchical $\gamma = 0.05$



- Faster in convergence time and better in terms of mIoU.
- Better results in **macro-classes** classification.
- Better **balancement** of classes.

• Future works



- Focus on Feature level regularization, rather than on Output level.
- For methods generalization, change:
 - Dataset
 - Architecture
 - Task

Thank you!